A donor copolymer Poly\2,6-4,8-bis(2-ethylhexyl)benzo[1,2-b:3,4-b]dithiophene-5,8-2,3-b is(5-octylthiophen-2-yl)quinoxaline\ (PBDTThQx) with benzo[1,2-b:4,5-b]dithiophene and quinoxaline derivatives was synthesized and characterized with NMR, ultraviolet-visible spectroscopy, thermogravimetric analyses, and cyclic voltammetry. Photovoltaic devices with the configuration indium tin oxide-poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate)-PBDTThQx-[6,6]-phenyl-C-61-butyric acid methyl ester (PC61BM)-LiF-Al were fabricated, in which PBDTThQx performed as the electron donor and PC61BM was the electron acceptor in the active layer. The device presented reasonable photovoltaic properties when the weight ratio of PBDTThQx:PC61BM reached 1:3. The open-circuit voltage, fill factor, and power conversion efficiency were gauged to be 0.75 V, 0.59, and 0.74%, respectively. The experimental data implied that PBDTThQx would be a promising donor candidate in the application of polymer solar cells. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40279.
The interface energy theory developed by Huang et al. is further extended to incorporate the effect of the residual interface stresses on the effective specific heats of multiphase thermoelastic nanocomposites. First, a micromechanics-based method is employed to derive the expressions of the effective specific heats at constant-strain and constant-stress of the composites. Second, in order to take into account the influence of the interface stresses on the overall properties of the nanocomposites, a thermoelastic interface constitutive relation expressed in terms of the first Piola-Kirchhoff interface stresses and the Lagrangian description of the generalized Young-Laplace equations are presented. Finally, by means of the Helmholtz free energy of the "equivalent inclusion" (the inclusion together with its interface), analytical expressions of the size-dependent effective specific heats of the nanocomposites are obtained. The model is illustrated by an example of a "three-phase thermoelastic composite" showing that the overall properties of the nanocomposites are influenced by the "residual interface stresses," which was sometimes ignored in the literature.
The interface energy theory developed by Huang et al. is further extended to incorporate the effect of the residual interface stresses on the effective specific heats of multiphase thermoelastic nanocomposites. First, a micromechanics-based method is employed to derive the expressions of the effective specific heats at constant-strain and constant-stress of the composites. Second, in order to take into account the influence of the interface stresses on the overall properties of the nanocomposites, a thermoelastic interface constitutive relation expressed in terms of the first Piola-Kirchhoff interface stresses and the Lagrangian description of the generalized Young-Laplace equations are presented. Finally, by means of the Helmholtz free energy of the "equivalent inclusion" (the inclusion together with its interface), analytical expressions of the size-dependent effective specific heats of the nanocomposites are obtained. The model is illustrated by an example of a "three-phase thermoelastic composite" showing that the overall properties of the nanocomposites are influenced by the "residual interface stresses," which was sometimes ignored in the literature.
Human activities usually leave footprints in the environment. By using 454 pyrosequencing, the impact of effluent from an industrial park on the coastal microecology in Hangzhou Bay, China, was interpreted by analysing the microbial communities of the activated sludge from three wastewater treatment plants and the sediment from the effluent receiving area. Based on richness and biodiversity, the sediments were more diversified than the activated sludge, although the seawater environment was highly contaminated. Both bacterial and archaeal communities were niche-determined. The bacterial phylum Proteobacteria dominated in all samples; and certain pollutant-resistant genera, such as Thauera and Truepera, were found in all samples. Archaeal phyla Euryarchaeota and Thaumarchaeota dominated the activated sludge and sediment samples, respectively. According to the analysis of shared operational taxonomic units (OTUs) and reads among different samples, more bacterial OTUs and reads were shared between two samples from sites with a direct effluent connection, showing a clear correlation between the wastewater treatment plants and the effluent receiving bay area. The impact of second-hand pollution can be evaluated by comparing the bacterial community in different eco-environments with a direct effluent connection, especially when pristine samples are not available.