
DYNAMICAL MORDELL-LANG CONJECTURE FOR
BIRATIONAL POLYNOMIAL MORPHISMS ON A2

XIE JUNYI

Abstract. We prove the dynamical Mordell-Lang conjecture for birational
polynomial morphisms on A2.

1. Introduction

The Mordell-Lang conjecture proved by Faltings [9] and Vojta [21] says that
if V is a subvariety of a semiabelian variety G defined over C and Γ is a finitely
generated subgroup of G(C), then V (C)

⋂
Γ is a union of at most finitely many

translates of subgroups of Γ.

The following dynamical analogue of the Mordell-Lang conjecture was proposed
by Ghioca and Tucker.

Dynamical Mordell-Lang Conjecture ([13]). Let X be a quasiprojective vari-
ety defined over C, let f : X → X be an endomorphism, and V be any subvariety
of X. For any point p ∈ X(C) the set {n ∈ N| fn(p) ∈ V (C)} is a union of at
most finitely many arithmetic progressions.

An arithmetic progression is a set of the form {an + b| n ∈ N} with a, b ∈ N
possibly with a = 0.

Observe that this conjecture implies the classical Mordell-Lang conjecture in
the case Γ ' (Z,+).

The Dynamical Mordell-Lang conjecture has been proved by Denis [6] for au-
tomorphisms of projective spaces and was later generalized by Bell [2] to the case
of automorphisms of affine varieties. In [3], Bell, Ghioca and Tucker proved it
for étale maps of quasiprojective varieties. The conjecture is also known in the
case where f = (F (x1), G(x2)) : A2

C → A2
C where F,G are polynomials and the

subvariety V is a line ([14]), and in the case f = (F (x1), · · · , F (xn)) : An
K → An

K

where F ∈ K[t] is an indecomposable polynomial defined over a number field K
which has no periodic critical points other than the point at infinity and V is a
curve ([4]).

Our main result can be stated as follows.

Theorem A. Let K be any algebraically closed field of characteristic 0, and
f : A2

K → A2
K be any birational polynomial morphism defined over K. Let C be

any curve in A2
K, and p be any point in A2(K). Then the set {n ∈ N| fn(p) ∈ C}

is a union of at most finitely many arithmetic progressions.
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In the case the map is an automorphism of A2
K of Hénon type (see [11]) then

this result follows from [3]. Our proof provides however an alternative approach
and does not rely on the construction of p-adic invariant curves.

Recall that the algebraic degree of a polynomial transformation f(x, y) =
(f1(x, y), f2(x, y)) is defined by deg f := max{deg f1, deg f2}. The limit λ(f) :=
limn→∞(deg fn)1/n exists and we refer to it as the dynamical degree of f (see
[7, 8]). Our proof shows that when λ(f) > 1, then Theorem A holds for fields of
arbitrary characteristic.

Note however that our Theorem A does not hold when charK > 0 and λ(f) = 1
(see [2, Proposition 6.1] for a counter-example).

To explain our strategy, we fix a birational polynomial morphism f : A2
K → A2

K .
By some reduction arguments, we may assume that K = Q.

We may compactify A2 by [10] to a smooth projective surface, such that f
extends to a birational transformation on X fixing a point Q in X \ A2, and f
contracts all curves at infinity to Q (see [10] and Section 6.1).

The key idea of our proof is to take advantage of this attracting fixed point and
to apply the following local version of the Dynamical Mordell-Lang conjecture.

Theorem 1.1. Let X be a smooth projective surface over an arbitrary valued
field (K, | · |) and f : X 99K X be a birational transformation defined over K.
Let C be any curve in X. Pick any K-point p such that fn(p) ∈ X \ I(f) for all
integers n ≥ 0, and fn(p) tends to a fixed K-point Q ∈ I(f−1) \ I(f) with respect
to a projective metric induced by | · | on X.

If the set

{n ∈ N| fn(p) ∈ C}
is infinite, then either fn(p) = Q for some n ≥ 0 or C is fixed.

To complete the proof of Theorem A we now rely on a global argument. When
the curve C is passing through the fixed point Q in X, we cover the Q-points of
the curve C by the basin of attraction of Q with respect to all absolute values
on Q. If the point p belongs to one of these attracting basins, then the local
dynamical Mordell-Lang applies and we are done. Otherwise it is possible to
bound the height of p and Northcott theorem shows that it is periodic.

Finally when neither the curve C nor its iterates contain the fixed point Q, we
are in position to apply the next result which allows us to conclude.

Theorem 1.2. Let X be a smooth projective surface over an algebraically closed
field, f : X 99K X be an algebraically stable birational transformation and C be
an irreducible curve in X such that fn does not contract C for any n.

If fn(C)
⋂
I(f) 6= ∅ for all n, then C is periodic.

We show mention that our approach seems difficult to deal with arbitrary
endomorphisms of surfaces. The key point of our proof is to take advantage of
an attracting fixed point in some suitable model. But such a point does not exist
for a general surface endomorphism.
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The article is organized in 8 sections. In Section 2 we give background infor-
mations on birational surface maps and metrics on projective varieties defined
over a valued field. In Section 3 we prove Theorem 1.2, which is a criterion for a
curve to be periodic. In Section 4 we prove some basic properties for the maps
satisfying the conclusion of dynamical Mordell-Lang conjecture. In Section 5 we
prove Theorem 1.1. In Section 6 we prove Theorem A in the case the dynamical
degree λ(f) = 1. In Section 7 we prove a technical lemma which gives a upper
bound on height when λ(f) > 1. In Section 8 we prove Theorem A.
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2. Notations and basics

2.1. Basics on birational maps on surfaces. See [5, 7, 10] for details.
In this section a variety is defined over an algebraically closed field k. Recall

that the resolution of singularities exists for surfaces over any algebraically closed
field (see [1]).

Let X be a smooth projective surface. We denote by N1(X) the Néron-Severi
group of X i.e. the group of numerical equivalence classes of divisors on X and
write N1(X)R := N1(X)⊗R. Let φ : X → Y be a morphism of smooth projective
surfaces. It induces a natural map φ∗ : N1(Y )R → N1(X)R. Since dimX = 2,
one has a perfect pairing

N1(X)R ×N1(X)R → R, (δ, γ)→ (δ · γ) ∈ R
induced by the intersection form. We denote by φ∗ : N1(X)R → N1(Y )R the dual
operator of φ∗.

Let X, Y be two smooth projective surfaces and f : X 99K Y be a birational
map. We denote by I(f) ⊆ X the indeterminacy set of f . For any curve C ⊂ X,
we write

f(C) := f(C \ I(f))

the strict transform of C.

Let f : X 99K X be a birational transformation and Γ be a desingularization
of its graph. Denote by π1 : Γ → X, π2 : Γ → X the natural projections. Then
the diagram

Γ
π1

��

π2

��
X

f // X

(∗)

is commutative and we call it a resolution of f .

Proposition 2.1 ([15]). We have the following properties.

(i) The morphisms π1, π2 are compositions of point blowups.
(ii) For any point Q 6∈ I(f), there is a Zariski open neighborhood U of p in X

and an injective morphism σ : U → Γ such that π1 ◦ σ = id.
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Then we define the following linear maps

f ∗ = π1∗π
∗
2 : N1(X)R → N1(X)R,

and
f∗ = π2∗π

∗
1 : N1(X)R → N1(X)R.

Observe that f∗ = f−1∗. Note that in general we have (f ◦ g)∗ 6= g∗f ∗.

For any big and nef class ω ∈ N1
R(X), we set

degω(f) := (f ∗ω · ω),

the limit limn→∞ degω(fn)1/n exists and does not depend on the choice of ω (see
[7, 8]). We denote this limit by λ(f) and call it the dynamical degree of f.

Definition 2.2 (see [7]). Let f : X 99K X be a birational transformation on a
smooth projective surface. Then f is said to be algebraically stable if and only
if there is no curve V ⊆ X such that fn(V ) ⊆ I(f) for some integer n ≥ 0.

In the case X = P2, f is algebraically stable if and only if deg(fn) = (deg f)n

for any n ∈ N.

Theorem 2.3 ([7]). Let f : X 99K X be a birational transformation of a smooth

projective surface. Then there exists a smooth projective surface X̂, and a proper

modification π : X̂ → X such that the lift of f to X̂ is an algebraically stable
map.

By a compactification of A2, we mean a smooth projective surfaceX admitting
a birational morphism π : X 99K P2 that is an isomorphism above A2 ⊆ P2, see
[10].

The theorem follows from [10, Proposition 2.6] and [10, Theorem 3.1], and
provides us with a good compactification of A2.

Theorem 2.4 ([10]). Let f : A2 → A2 be a birational polynomial transforma-
tion with λ(f) > 1. Then there exists a compactification X of A2 satisfying the
following properties.

(i) The map f extends to an algebraically stable map f̃ on X.

(ii) There exists a f̃ -fixed point Q ∈ X \ A2 such that df̃ 2(Q) = 0.

(iii) There exists an integer n ≥ 1 such that f̃n(X \ A2) = Q.

2.2. Branches of curves on surfaces. [12, 16] Let X be a smooth projective
surface over an algebraically closed field k. Let C be an irreducible curve in X
and p be a point in C.

Definition 2.5. A branch of C at p is a point in the normalization of C whose
image is p.

Let IC,p be the prime ideal associated to C in the local function ring OX,p at p

and ÎC,p be the completion of IC,p in the completion of local function ring ÔX,p.

Let i : C̃ → C is a normalization of C and p̃ a point in i−1(p). Let s be

the branch of C at p defined by the point p̃. The morphism i : C̃ → C induces
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a morphism i∗ : ÔX,p → ÔC̃,p̃ between the completions of local function rings.
The map s 7→ ps := ker i∗ gives us a one to one correspondence between the set

of branches of C at p and the set of prime ideals of ÔX,p with height 1 which

contains ÎC,p.
Given any two different branches s1 and s2 at a point p ∈ X, the intersection

number is denoted by

(s1 · s2) := dimk ÔX,p/(ps1 + ps2).

For convenience, we set (s1 · s2) := 0 if s1 and s2 are branches at different points.

Let Z be a smooth projective surface and f : X 99K Z be a birational map. If
f does not contract C then we denote by f(s) the branch of f(s) defined by the

point p̃ in the normalization f ◦ i : C̃ → f(C) and call it the strict transform of
s. Observe that f(s) is a branch of f(C) and when p 6∈ I(f), we have that f(s)
is a branch of curve at f(p).

If f is regular at p, we write

f∗s =

{
f(s), when f does not contract C;

0, otherwise.

Let Y be another smooth projective surface and π : Y → X be a birational
morphism. Denote by π#s := π−1(s) the strict transform of s. Let Ei, i =
1, · · · ,m be the exceptional curves of π. There is a unique sequence of non
negative integers (ai)0≤i≤m such that for any irreducible curve D in Y different
from π#C, we have (s · π∗D) = (π#s +

∑m
i=1 aiEi ·D). Denote by π∗s := π#s +∑m

i=1 aiEi and call it the pull back of s.

Proposition 2.6. We have the following properties.

(i) We have π∗π
∗s = s.

(ii) For any irreducible curve (resp. any branch of curve) D in Y different
from π#C (resp. π#s), we have

(π∗s ·D) = (s · π∗D).

(iii) For any curve (resp. any branch of curve) D in X different from C (resp.
s) then we have

(s ·D) = (π#s · π∗D).

2.3. Metrics on projective varieties defined over a valued field. A field
with an absolute value is called a valued field.

Definition 2.7. Let (K, | · |v) be a valued field. For any integer n ≥ 1, we define
a metric dv on the projective space Pn(K) by

dv([x0 : · · · : xn], [y0 : · · · : yn]) =
max0≤i,j≤n |xiyj − xjyi|v

max0≤i≤n |xi|v max0≤j≤n |yj|v
for any two points [x0 : · · · : xn], [y0 : · · · : yn] ∈ Pn(K).



6 XIE JUNYI

Observe that when | · |v is archimedean, then the metric dv is not induced by
a smooth riemannian metric. However it is equivalent to the restriction of the
Fubini-Study metric on Pn(C) or Pn(R) to Pn(K) induced by σv.

More generally, for a projective variety X defined over K, if we fix an em-
bedding ι : X ↪→ Pn, we may restrict the metric dv on Pn(K) to a metric dv,ι
on X(K). This metric depends on the choice of embedding ι in general, but for
different embeddings ι1 and ι2, the metrics dv,ι1 and dv,ι2 are equivalent. Since we
are mostly intersecting in the topology induced by these metrics we shall usually
write dv instead of dv,ι for simplicity.

3. A criterion for a curve to be periodic

Our aim in this section is to prove Theorem 1.2 from the introduction. Let us
recall the setting:

(i) X is a smooth projective surface over an algebraically closed field;
(ii) f : X 99K X is an algebraically stable birational transformation;

(iii) C is an irreducible curve in X such that fn does not contract C and
fn(C)

⋂
I(f) 6= ∅ for all n.

Our aim is to show that C periodic. Let us begin with the following special case.

Lemma 3.1. Let x be a point in I(f)
⋂
C. If there exists a branch s of C at x

such that fn(s) is again a branch at x for all n ≥ 0, then C is fixed by f .

Proof of Lemma 3.1. Since f is birational, we may chose a resolution of f as in
the diagram (∗) in Section 2.1.

If C is not fixed, we have f(s) 6= s so that A := (s ·f(s))x <∞. By Proposition
2.1, π2 is invertible on a Zariski neighbourhood of x. Let Fx be the fiber of π1
over x.

For any m ≥ 0, we have,

((fm(s) · fm+1(s))x =
∑
y∈Fx

(π#
1 f

m(s) · π∗1fm+1(s))y

≥(π#
1 f

m(s) · π∗1fm+1(s))π−1
2 (x)

=(π#
1 f

m(s) · π#
1 f

m+1(s))π−1
2 (x) + (π#

1 f
m(s) · Fx)π−1

2 (x)

=(fm+1(s) · fm+2(s))x + (π#
1 f

m(s) · Fx)π−1
2 (x)

≥(fm+1(s) · fm+2(s))x + 1.

It follows that A = (s · f(s))x ≥ (fm(s) · fm+1(s))x +m ≥ m for all m ≥ 0 which
yields a contradiction. �

We now treat the general case.

Proof of Theorem 1.2. Recall that fn does not contract C and fn(C)
⋂
I(f) 6= ∅

for all n. By Lemma 3.1, it is sufficient to find a point x ∈ I(f)
⋂
C such that

the image by fn of the branch of C at x is again a branch of a curve at x for all
n ≥ 0. By contradiction we suppose that C is not periodic.



7

To do so, we introduce the set

P (f) = {x ∈ I(f)| there is n1 > n2 ≥ 0 such that f−n1(x) = f−n2(x)}
and the set

O(f) = {f−n(x)| x ∈ P (f) and n ≥ 0}.
By definition, O(f) is finite. Since f is algebraically stable, O(f) = O(fn) for all
n ≥ 1. Replacing f by f l for a suitable l ≥ 1, we may assume that O(f) = P (f).
Set N(f) = I(f) \ P (f).

First, we prove

Lemma 3.2. For all n ≥ 0, fn(C)
⋂
O(f) 6= ∅.

Proof of Lemma 3.2. We assume that I(f) = {p1, · · · , pm} and define the map

F = (f−1, · · · , f−1) : Xm 99K Xm.

Denote by πi the projection onto the i-th factor and set

D =
m⋃
i=1

π−1i (C).

Pick a point q = (p1, · · · , pm) ∈ Xm. Since fn(C)
⋂
I(f) 6= ∅ for all n ≥ 0 by

assamption, we have F n(q) ∈ D for all n ≥ 0. Let Z ′ be the Zariski closure
of {F n(q)|n ≥ 0}. Then we have Z ′ ⊆ D. Let Z be the union of all irreducible
components of Z ′ of positively dimension. If Z is empty, then pi is f−1-preperiodic
for all i and we conclude.

Otherwise since {F n(q)|n ≥ 0}
⋂
I(F ) = ∅, the proper transformation of Z by

F is well defined and satisfies F (Z) = Z, hence all irreducible components of Z
are periodic. Let l be a common period for all components of Z. Observe that
any irreducible component of Z is included in some π−1i (C) for i = 1, · · · ,m. In
other words, there exists k ≥ 0 and i ∈ {1, · · · ,m} such that f−ln−k(pi) ∈ C
for all n ≥ 0. If pi is not f−1-preperiodic, then C is the Zariski closure of
{f−ln−k(pi)|n ≥ 0} which is f−l-invariant. This implies C to be periodic which
contradicts to our hypothesis. It follows that pi is f−1-preperiodic.

Repeating the same argument for fn(C), we have fn(C)
⋂
O(f) 6= ∅ for all

n ≥ 0. �

Denote by D(n) the number of branches of fn(C) at points of O(f). Since
f−1(O(f)) ⊆ O(f), we have D(n) is decrease and by Lemma 3.2, we have D(n) ≥
1. Replace C by fM(C) for some M ≥ 0, we may assume that D(n) is constant
for n ≥ 0. It follows that for any branch of curve of fn(C) at a point in O(f), its
image by f is again a branch of fn+1(C) at a point of O(f). Set

S = {x ∈ O(f)| there are infinitely many n ≥ 0 such that x ∈ fn(C)}.
By the finiteness of O(f), we may suppose that

fn(C)
⋂

O(f) = fn(C)
⋂

S

for all integer n ≥ 0.

We claim that
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Lemma 3.3. Replacing f by a positive iterate, there exists a point x ∈ C
⋂
S for

which there is a branch s of C at x such that fn(s) is again a branch of curve at
x for all n ≥ 0.

According to Lemma 3.1, we conclude. �

Proof of Lemma 3.3. Pick a resolution of f as in the diagram (∗) in Section 2.1.
For any point x ∈ S, denote by Fx the fibre of π1 over x and Ex = π2(Fx)

⋂
S.

We have Ex 6= ∅. Otherwise, there exists n ≥ 0 for which x ∈ fn(C) and a
branch s of fn(C) at x. The assumption Ex = ∅ implies that f(s) is not a branch
at any point in S. This shows that D(n+ 1) < D(n) and we get a contradiction.

On the other hand, let x1, x2 be two different points in S. If Ex1
⋂
Ex1 6= ∅,

there exists y ∈ S such that y ∈ π2(Fx1)
⋂
π2(Fx2). By Zariski’s main theorem,

π−12 (y) is a connected curve meeting Fx1 and Fx2 . So π1(π
−1
2 (y)) is a curve and it is

contracted by f to y ∈ S ⊆ I(f). This contradicts the fact that f is algebraically
stable. So we have

Ex1
⋂

Ex1 = π2(Fx1)
⋂

π2(Fx2)
⋂

S = ∅.

Set T =
∐

x∈S Ex ⊆ S. Since #Ex ≥ 1 for all x, we have #T ≥ #S. It follows
that T = S and #Ex = 1 for all x ∈ S. This allows us to define a map G : S → S
sending x ∈ S to the unique point in Ex. Then G is an one to one map. For all
n ≥ M, f sends a branch of fn(C) at a point x ∈ S to a branch of fn+1(C) at
the point G(x). By replacing f by f (#S)!, we may assume that G = id. Then for
any x ∈ S

⋂
C and s a branch of C at x, we have fn(s) is again a branch at x

for all n ≥ 0. �

4. The DML property

For convenience, we introduce the following

Definition 4.1. Let X be a smooth surface defined over an algebraically closed
field, and f : X 99K X be a rational transformation. We say that the pair (X, f)
satisfies the DML property if for any irreducible curve C on X and for any closed
point p ∈ X such that fn(p) 6∈ I(f) for all n ≥ 0, the set {n ∈ N| fn(p) ∈ C} is
a union of at most finitely many arithmetic progressions.

In our setting the DML property is equivalent to the following seemingly
stronger property.

Proposition 4.2. Let X be a smooth surface defined over an algebraically closed
field, and f : X 99K X be a rational transformation. The following statements
are equivalent.

(1) The pair (X, f) satisfies the DML property.
(2) For any curve C on X and any closed point p ∈ X such that fn(p) 6∈

I(f) for all n ≥ 0 and the set {n ∈ N|fn(p) ∈ C} is infinite, then p is
preperiodic or C is periodic.

Proof. Suppose (1) holds. Let C be any curve in X and p be a closed point in X
such that fn(p) 6∈ I(f) for all n ≥ 0. Assume that the set {n ∈ N| fn(p) ∈ C}
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is infinite. The DML property of (X, f) implies that there are integers a > 0
and b ≥ 0 such that fan+b(p) ∈ C for all n ≥ 0. If p is not preperiodic, the set
Oa,b := {fan+b(p)| n ≥ 0} is Zariski dense in C and fa(Oa,b) ⊆ Oa,b. It follows
that fa(C) ⊆ C, hence C is periodic.

Suppose (2) holds. If the set S := {n ∈ N| fn(p) ∈ C} is finite or p is
preperiodic, then there is nothing to prove. We may assume that S is infinite
and p is not preperiodic. The property (2) implies that C is periodic. There
exists an integer a > 0 such that fa(C) ⊆ C. We may suppose that f i(C) 6⊆ C
for 1 ≤ i ≤ a − 1. Since p is not preperiodic, there exists N ≥ 0, such that
fn(p) 6∈ (

⋃
1≤i≤a−1 f

i(C))
⋂
C for all n ≥ N. So S \ {1, · · · , N − 1} takes form

{an+ b| n ≥ 0} where b ≥ 0 is an integer, and it follows that (X, f) satisfies the
DML property. �

Theorem 4.3. Let X be a smooth surface defined over an algebraically closed
field, and f : X 99K X be a rational transformation, then the following properties
hold.

(i) For any m ≥ 1, (X, f) satisfies the DML property if and only if (X, fm)
satisfies the DML property.

(ii) Suppose U is an open subset of X such that the restriction f|U : U → U
is a morphism. Then (X, f) satisfies the DML property, if and only if
(U, f|U) satisfies the DML property.

(iii) Suppose π : X → X ′ is a birational morphism between smooth projective
surfaces, and f : X 99K X, f ′ : X ′ 99K X ′ are rational maps such that
π ◦ f = f ′ ◦ π. If the pair (X, f) satisfies the DML property, then (X ′, f ′)
satisfies the DML property.

(iv) Suppose π : X → X ′ is a birational morphism between smooth projective
surfaces, and f : X 99K X, f ′ : X ′ 99K X ′ are birational transformations
such that π ◦ f = f ′ ◦ π. If f ′ is algebraically stable and the pair (X ′, f ′)
satisfies the DML property, then (X, f) satisfies the DML property.

Definition 4.4. Let X be a smooth projective surface defined over an algebraical-
ly closed field and f : X 99K X be a birational transformation. We say that
(X ′, f ′) is a birational model of (X, f) if there is a birational map π : X ′ 99K X
such that

f ′ = π−1 ◦ f ◦ π.

Corollary 4.5. Let X be a smooth projective surface defined over an algebraically
closed field and f : X 99K X be an algebraically stable birational transformation
such that (X, f) satisfies the DML property. Then all birational models (X ′, f ′)
of (X, f) satisfy the DML property.

Proof of Corollary 4.5. Pick Y a desingularization of the graph of f and set π1, π2
the projections which make the diagram

Y
π1

~~

π2

  
X

φ // X ′
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to be commutative. Since f is algebraically stable, its lift to Y satisfies the
DML property by Theorem 4.3 (iv). We conclude that (X ′, f ′) satisfies the DML
property by Theorem 4.3 (iii). �

Proof of Theorem 4.3. (i). The ”only if” part is trivial, so that we only have to
deal with the ”if” part. We assume that (X, fm) satisfies the DML property. Let
C be a curve in X and p be a point in X such that fn(p) 6∈ I(f) for all n ≥ 0.
Suppose that the set {n ∈ N| fn(p) ∈ C} is infinite. Since

{n ∈ N| fn(p) ∈ C} =
m−1⋃
i=0

{n ∈ N| fnm(f i(p)) ∈ C},

then for some i, the set {n ∈ N| fnm(f i(p)) ∈ C} is also infinite. Since (X, fm)
satisfies the DML property, C is periodic or f i(p) is preperiodic. It follows that
C is periodic or p is preperiodic.

(ii). If (X, f) satisfies the DML property, since f|U : U → U is a morphism,
(U, f|U) satisfies the DML property.

Conversely suppose that (U, f|U) satisfies the DML property. Let C be an
irreducible curve in X, p be a closed point in X such that fn(p) 6∈ I(f) for all
n ≥ 0 and the set {n ∈ N|fn(p) ∈ C} is infinite. The set E = X − U is a proper
closed subvariety of X. If p ∈ U , then we have that C 6⊆ E. Since (U, f|U) satisfies
the DML property, we have either p is preperiodic or C is periodic. Otherwise,
we may assume that for all n ≥ 0, fn(p) ∈ E, then the Zariski closure D of
{fn(p)| n ≥ 0}, is contained in E. We assume that p is not preperiodic, then
C ⊆ D. Since D is fixed, we have that C is periodic.

(iii). It is sufficient to treat the case when π is the blowup at a point q ∈ X ′. Let
C ′ be a curve in X ′, p′ be a point in X ′ such that (f ′)n(p′) 6∈ I(f ′) for all n ≥ 0
and the set {n ∈ N| (f ′)n(p′) ∈ C ′} is infinite. We assume that p′ is not a periodic
point, so that for n large enough, f

′n(p′) 6= q. Replacing p by f
′m(p′) for some m

large enough, we may assume that f
′n(p′) 6= q for all n ≥ 0. Set p = π−1(p′) and

C = π−1(C ′), then we have fn(p) 6∈ I(f) for all n ≥ 0 and the set

{n ∈ N| fn(p) ∈ C}

is infinite. This implies C and then C ′ to be periodic.

(iv). Let C ⊆ X be a curve, p be a point in X such that fn(p) 6∈ I(f) for all
n ≥ 0 and the set {n ∈ N| fn(p) ∈ C} is infinite. We may assume that C is
irreducible. Let E be the exceptional locus of π.

Lemma 4.6. If C ⊆ E and π(C) is a point in I(f ′), then (iv) holds.

Proof of Lemma 4.6. Set q := π(C) ∈ I(f ′). Since f ′ is algebraically stable, we
have q 6∈ I((f

′
)−n) and

π(f−n(C)) = (f
′
)−n(q)

for all n ≥ 1. It follows that f−n(C) is a point or an exceptional curve of π for
n ≥ 1.
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If there exists l ≥ 1 such that f−l(C) is a point, we pick two integers n1 > n2 ≥ l
such that fn1(p), fn2(p) ∈ C. Then fn1−l(p) = fn2−l(p), which implies p to be
preperiodic.

Otherwise f−n(C) is an exceptional curve of π, for all n ≥ 0. Since there are
only finitely many irreducible components of E, we have that C is periodic. �

Denote by K = π−1(I(f ′)).

Lemma 4.7. If there are infinitely many n ≥ 0 such that fn(p) ∈ K, then (iv)
holds.

Proof of 4.7. There is an irreducible component F of K such that the set {n ≥
0| fn(p) ∈ F} is infinite.

If F is a point, then p is preperiodic.
Otherwise F is a curve, then F ⊆ E and π(F ) ⊆ I(f ′). Suppose that p is not

preperiodic, Lemma 4.6 shows that F is periodic. Then F ′ =
⋃
k≥0 f

k(F ) is a
curve and fn(p) ⊆ F ′ for all n ≥ 0. If C ⊆ F ′, then C is periodic. If C 6⊆ F ′,
then C

⋂
F ′ is finite, and this shows that p is preperiodic. �

Lemma 4.8. If C ⊆ E, then (iv) holds.

Proof. By Lemma 4.7, we may assume that there exists an integer N ≥ 0, such
that fn(p) 6∈ K for all n ≥ N.

Set q := π(C). By Lemma 4.6, we assume that q 6∈ I(f ′). Then we have

π(fN+l(p)) = f
′l(π(fN(p)))

for l ≥ 0. It follows that there are infinitely many l ≥ 0, such that f
′l(π(fN(p))) =

q. Then q is preperiodic and the obit of f
′N(q) does not meet I(f ′). Since

π(fn(C)) = f
′n(q) for all n ≥ 0, we have fn(C) ⊆

⋃
k≥N π

−1(fk(q)) for all
n ≥ N. Hence ether C is periodic or for some n ≥ 1, fn(C) is a point. In the
second case, we conclude that p is preperiodic. �

Let L = K
⋃
E.

Lemma 4.9. If there are infinitely many n ≥ 0 such that fn(p) ∈ L, then (iv)
holds.

Proof of Lemma 4.9. There is an irreducible component F of L such that {n ≥
0| fn(p) ∈ F} is infinite.

If F is a point, then p is preperiodic.
Otherwise F is a curve, then F ⊆ E. Suppose that p is not preperiodic, Lemma

4.8 shows that F is periodic. Then F ′ =
⋃
k≥0 f

k(F ) is a curve and fn(p) ⊆ F ′

for all n ≥ 0. If C ⊆ F ′, then C is periodic. Otherwise C 6⊆ F ′, we have that
C
⋂
F ′ is finite and then p is preperiodic. �

We may assume that there is an integer M ≥ 0, such that fn(p) 6∈ L for all
n ≥M.

If C 6⊆ E, π(C) is a curve. For all l ≥ 0 we have

π(fM+l(p)) = f
′l(π(fM(p))) 6∈ I(f ′).



12 XIE JUNYI

Since (X ′, f ′) satisfies the DML property, either π(C) is periodic or π(p) is prepe-
riodic. When π(C) is periodic, we have C is periodic. Otherwise π(p) is prepe-
riodic. For any l ≥ 0, π is invertible on some Zariski neighborhood of the point
f
′l(π(fM(p))) and then we conclude that p is peperiodic. �

5. Local dynamical Mordell Lang theorem

The aim of this section is to prove Theorem 1.1. We are in the following
situation:

(i) X is a smooth projective surface defined over an arbitrary valued field
(K, | · |).

(ii) f : X 99K X is a birational transformation defined over K;
(iii) Q is K-point of X such that Q ∈ I(f−1)

⋂
I(f) and f(Q) = Q;

(iv) p is K-point of X such that fn(p) 6∈ I(f) for all n ≥ 0;
(v) fn(p)→ Q as n→∞ with respect to the topology induced by | · |;

(vi) C is a curve in X such that the set {n ∈ N| fn(p) ∈ C} is infinite.

We want to prove that C is fixed by f.

Proof of Theorem 1.1. Pick a resolution of f as in the diagram (∗) in Section 2.1.
Recall Proposition 2.1. Assume that for all n ≥ 0, fn(p) 6= Q. There is an infinite
sequence {nk}k≥0 such that fnk(p) ∈ C \{Q}. It follows that fnk−m(p) ∈ f−m(C)
for k large enough. Setting k →∞, we get Q ∈ f−m(C) for all m ≥ 0.

If C 6= f−1(C), then we have f−m(C) 6= f−m−1(C) for all m ≥ 0. By computing
local intersection at Q, we get

(5.1) (f−m(C) · f−m−1(C))Q =
∑

x∈π−1
2 (Q)

(π∗2f
−m(C) · π#

2 f
−m−1(C))x

=
∑

x∈π−1
2 (Q)

((
π#
2 f
−m(C) +

s∑
i=1

vEi
(f−m(C))Ei

)
· π#

2 f
−m−1(C)

)
x

where Ei, 1 ≤ i ≤ s are irreducible exceptional curves for π2. Since

Supp(
s∑
i=1

vEi
(f−m(C))Ei) =

⋃
1≤i≤s

Ei = π−12 (Q),

we have

(5.1) =
∑

x∈π−1
2 (Q)

(π#
2 f
−m(C)·π#

2 f
−m−1(C))x+

((
s∑
i=1

vEi
(f−m(C))Ei

)
· π#

2 f
−m−1(C)

)

≥
∑

x∈π−1
2 (Q)

(π#
2 f
−m(C) · π#

2 f
−m−1(C))x + 1

=
(
σ(f−m−1(C)) · σ(f−m−2(C))

)
σ(Q)

+ 1

= (f−m−1(C) · f−m−2(C))Q + 1.
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It follows that

0 < (f−m(C)·f−m−1(C))Q ≤ (f−m+1(C)·f−m(C))Q−1 ≤ · · · ≤ (C ·f−1(C))Q−m
for all m ≥ 0, which yields a contradiction. So we have C = f−1(C) and then
f(C) = C. �

Observe that our proof of Theorem 1.1 actually gives

Proposition 5.1. Let X be a projective surface over an algebraically closed field
and f : X 99K X be a birational map with a fixed point Q ∈ I(f−1) \ I(f). Then
all periodic curves passing through Q are fixed.

6. The case λ(f) = 1

In this section, we prove Theorem A in the case λ(f) = 1. Denote by K an
algebraically closed field of characteristic 0.

Recall from [7] and [10], that if λ(f) = 1, then we are in one of the following
two cases:

(1) there exists a smooth projective surface X and an automorphism f ′ on X
such that the pair (X, f ′) is birationally conjugated to (A2, f);

(2) in suitable affine coordinates, f(x, y) = (ax + b, A(x)y + B(x)) where A
and B are polynomials with A 6= 0 and a ∈ K∗, b ∈ K.

The case of automorphism has been treated by Bell, Ghioca and Tucker. The-
orem A thus follows from [3, Theorem 1.3] in case (1) and in case (2) where
degA = 0. So in this section we suppose that f takes form

f(x, y) = (ax+ b, A(x)y +B(x)) (∗∗)
with A,B ∈ K[x], degA ≥ 1, a ∈ K∗ and b ∈ K.

6.1. Algebraically stable models. Any map of the form (∗∗) can be made
algebraically stable in a suitable Hirzebruch surface Fn for some n ≥ 0. It
is convenient to work with the presentation of these surfaces as a quotient by
(Gm)2, as in [17]. By definition, the set of closed points Fn(K) is the quotient of
A4(K)\ ({x1 = 0 and x2 = 0}

⋃
{x3 = 0 and x4 = 0}) by the equivalence relation

generated by
(x1, x2, x3, x4) ∼ (λx1, λx2, µx3, µ/λ

nx4)

for λ, µ ∈ K∗. We denote by [x1, x2, x3, x4] the equivalence class of (x1, x2, x3, x4).
We have a natural morphism πn : Fn → P1 given by πn([x1, x2, x3, x4]) = [x1 : x2]
which makes Fn into a locally trivial P1 fibration.

We shall look at the embedding

in : A2 ↪→ Fn : (x, y) 7→ [x, 1, y, 1].

Then Fn \ A2 is union of two lines: one is the fiber at infinity F∞ of πn, and the
other one is a section of πn which we denote by L∞.

Recall that f has the form (∗∗). For each n ≥ 0, set d = max{degA, degB−n}.
By the embedding in, the map f extends to a birational transformation

fn : [x1, x2, x3, x4] 7→ [ax1 + bx2, x2, A(x1/x2)x
d
2x3 +B(x1/x2)x

d+n
2 x4, x

d
2x4]
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on Fn. For any n ≥ degB − degA+ 1, we have d = degA and

I(fn) = {[x1, x2, x3, x4] ∈ Fn|x2 = x3 = 0}.
The unique curve which is contracted by fn is F∞ = {x2 = 0} and its image is
fn(F∞) = [1, 0, 1, 0]. It implies the following:

Proposition 6.1. For any integer n ≥ degB − degA + 1, fn is algebraically
stable on Fn and contracts the curve F∞ to the point [1, 0, 1, 0].

6.2. The attracting case. In the remaining of this section, we fix an integer
m such that the extension of f to Fm is algebraically stable. For simplicity, we
write f for the map fm induced by f on Fm.

Proposition 6.2. Let | · | be an absolute value on K such that |a| > 1. Then
(Fm, f) satisfies the DML property.

Proof. Since a 6= 1, by changing coordinates, we may assume that f = (ax,A(x)y+
B(x)). Since f contracts the fiber F∞ to O := L∞

⋂
F∞, the point O is fixed

and the two eigenvalues of df at O are 1/a and 0. Since |a| > 1, there is a neigh-
bourhood U of O, such that U

⋂
I(f) = ∅, f(U) ⊆ U and fn → O uniformly on

U.
Let C be an irreducible curve in P2

K and p be a point in A2
K such that the set

{n ∈ N| fn(p) ∈ C} is infinite. By Lemma 4.3, we may assume that p ∈ A2
K and

C 6⊆ L∞
⋃
F∞.

If C
⋂
F∞ = {O}, there is an open set V of P1

K , such that [1 : 0] ∈ V and
π−1m (V )

⋂
C ⊆ U. Since |a| > 1, for n large enough, fn(p) ∈ π−1m (V ). So there is

an integer n1 > 0 such that fn1(p) ∈ U. Theorem 1.1 implies that the curve C is
fixed.

We may assume now that fn(C)
⋂
F∞ 6= {O} for all n ≥ 0.

If C
⋂
F∞ = ∅, then C is a fiber of the rational fibration πm : Fm → P1. Since

{n ∈ N| fn(p) ∈ C} is infinite, the curve C is fixed.
Finally assume that fn(C)

⋂
F∞ 6= ∅ for all n ≥ 0. Since f contracts F∞ to O,

we have
fn(C)

⋂
I(f) 6= ∅,

and we conclude by Theorem 1.2 that C is periodic in this case. �

6.3. The general case.

Proposition 6.3. The pair (Fm, f) satisfies the DML property.

Proof. Let C be a curve in Fm, and p be a point in A2
K such that the set {n ≥

0|fn(p) ∈ C} is infinite. We may assume that the transcendence degree of K
is finite, since we can find a subfield of K such that it has finite transcendence
degree and f, C and p are all defined over this subfield.

In the case f acts on the base as the identity, the proposition holds trivially.
Assume that it is not that case. Let O = L∞

⋂
F∞. As in the proof of Proposition

6.2, we only have to consider the case C
⋂
F∞ = O.

If a is a root of unity, we may replace f by fn for some integer n > 0 and assume
that a = 1 and b = 1. Since the transcendence degree of K is finite, we may embed
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K in the field of complex numbers C. Let | · | be the standard absolute value on
C. Since f contracts F∞ to O, there is a neighborhood U of O with respect to the
usual euclidian topology such that for all point q ∈ U

⋂
{(x, y) ∈ C2| Re(x) > 0},

we have limn→∞ f
n(q) = O. Since C

⋂
F∞ = O, there exists M > 0, such that

C
⋂
{(x, y)| Re(x) > M} ⊆ U and we conclude by using Theorem 1.1 in this case.

If a is an algebraic number over Q and is not a root of unity, by [20, Theorem
3.8] there exists an absolute value | · |v (either archimedean or non-archimedean)
on Q such that |a|v > 1. This shows that (Fm, f) satisfies the DML property by
Proposition 6.2.

If a is not an algebraic number over Q, we claim that there exists a field
embedding ι : K ↪→ C such that |ι(a)| > 1, and we may conclude again by using
Proposition 6.2.

It thus remains to prove the claim. There is a subring R of K which is finitely
generated over Q, such that f, C and p are all defined over R. There is an integer
l > 0, such that R = Q[t1, · · · , tl]/I, where I is a prime ideal of Q[t1, · · · , tl]. It
induces an embedding SpecR := V ⊆ Al

Q. We set

VC := V ×SpecQ SpecC ⊆ Al
C.

For any polynomial F ∈ Q[t1, · · · , tl] \ I, we also define VF := {F = 0}. Then
VC\VF is a dense open set in the usual euclidian topology. Since Q[t1, · · · , tl]\I is
countable, the set VC \ (

⋃
F∈Q[t1,··· ,tl]\I VF ) is dense. Interpreting a a nonconstant

holomorphic function on VC, we see that there exists an open set W ⊆ VC such
that |a| > 1 on W.

Pick a closed point (s1, · · · , sl) ∈ W \ (
⋃
F∈Q[t1,··· ,tl]\I VF ) and consider the

unique morphism ι : R = Q[t1, · · · , tl]/I → C sending ti to si. This morphism is
in fact an embedding. We may extend it to an embedding of K as required. �

7. Upper bound on heights when λ(f) > 1

7.1. Absolute values on fields. ([20]) SetMQ := {|·|∞ and |·|p for all prime p}
where | · |∞ is the usual absolute value and | · |p is the p-adic absolute value defined
by |x| := p−ordp(x) for x ∈ Q.

Let K/Q be a number field. The set of places on K is denoted by MK and
consists of all absolute values on K whose restriction to Q is one of the places in
MQ. Further we denote by M∞

K the set of archimedean places; and by M0
K the

set of nonarchimedean places.
When v is archimedean, there exists an embedding σv : K ↪→ C (or R) such

that | · |v is the restriction to K of the usual absolute value on C (or R).

Similarly, we introduce the set of places on function fields.
Let C be a a smooth projective curve defined over an algebraically closed field

k and L := k(C) be the function field of C. The set of places on L, denoted by
ML consists of all absolute values of the form:

| · |p : x 7→ eordp(x)

for any x ∈ L and any closed point p ∈ C.
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Let K/L be a finite field extension. The set of places on K is denoted byMK

and consists of all absolute values on K whose restriction to L is one of the places
in ML. In this case, all the places in MK are nonarchimedean. Set M0

K =MK

and M∞
K = ∅ for convenience.

Let K/L be a finite field extension where L = Q or a function field k(C) of a
curve C. For any place v ∈ MK , denote by nv := [Kv : Lv] the local degree of v
then we have the product formula∏

v∈MK

|x|nv
v = 1

for all x ∈ K∗.
For any v ∈MK , denote by Ov := {x ∈ K| |x|v ≤ 1} the ring of v-integers. In

the number field case, we also denote by OK := {x ∈ K| |x|v ≤ 1 for all v ∈M0
K}

the ring of integers.

7.2. Basics on Heights. We recall some basic properties of heights that are
needed in the proof of Theorem A, see [18] or [19] for detail.

In this section, we set L = Q or k(C) the function field of a curve C defined
over an algebraically closed field k. Denote by L its algebraic closure.

Proposition-Definition 7.1. Let K/L be a finite field extension. Let p ∈ Pn(K)
be a point with homogeneous coordinate p = [x0 : · · · : xn] where x0, · · · , xn ∈ K.
The height of p is the quantity

HPn(p) := (
∏

v∈MK

max{|x0|v, · · · , |xn|v}nv)1/[K:L].

The height HPn(p) depends neither on the choice of homogeneous coordinates of
p, nor on the choice of a field extension K which contains p.

When L = k(C), we have a geometric interpretation of the height HPn(p).
Observe that PnL is the generic fiber of the trivial fibration π : PnC := Pn×C → C.
We set sp : D → PnC the normalization of the Zariski closure of p in PnC . Then we
have

HPn(p) = e
deg(s∗pOPn

C
(1))/ deg(π◦sp).

Proposition 7.2. Let f : Pn
L
99K Pm

L
be a rational map and X be a subvariety of

Pn
L

such that I(f)
⋂
X is empty and the restriction f |X is finite of degree d onto

its image f(X).
Then there exist A > 0 such that for all point p ∈ X(L), we have

1

A
HPn(p)d ≤ HPm(f(p)) ≤ AHPn(p)d.

Proposition 7.3 (Northcott Property). Let K/Q be a number field, and B > 0
be any constant. Then the set

{p ∈ Pn(K)| HPn(p) ≤ B}
is finite.
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Remark 7.4. The Northcott Property does not hold in the case K = k(C) when
k is not a finite field. For example, the set

{p ∈ Pn(k(t))| HPn(p) = 0} = {[x : y]| (x, y) ∈ k2 \ {(0, 0)}}

is infinite.

7.3. Upper bounds on heights. Let K be a number field or a function field
of a smooth curve over an algebraically closed field k′. Let f : A2

K
→ A2

K
be any

birational polynomial morphism defined over K and assume that λ(f) > 1.
According to Theorem 2.4, we may suppose that there exists a compactification

X of A2
K

, a closed point Q ∈ X \ A2
K

such that f extends to a birational

transformation f̃ on X which satisfies the following properties:

(i) f̃ is algebraically stable on X;

(ii) there exists a closed point Q ∈ X \ A2 fixed by f̃ , such that df̃(Q) = 0;

(iii) f̃(X \ A2) = Q.

To simplify, we write f = f̃ in the rest of the paper. We fix an embedding
X ⊆ PN

K
. Let C be an irreducible curve in X whose intersection with A2

K
is non

empty.

Proposition 7.5. Suppose that C is not periodic and C \ A2
K

= {Q}. Then
there exists a number B > 0 such that for any point p ∈ C(K) for which the set
{n ∈ N| fn(p) ∈ C} is infinite, we have HPN (p) ≤ B.

Proof. Assume that X, f, C and Q are all defined over K and Q = [1 : 0 : · · · :
0] ∈ PNK . We can extend f to a rational morphism on PN which is regular at
Q. Then there exists an element a ∈ K∗ and Fi ∈ (x1, · · · , xN)K[x0, · · · , xN ] for
i = 0, · · · , N such that

f([1 : x1 : · · · : xN ]) = [a+ F0 : F1 : · · · : FN ]

for any [1 : x1 : · · · : xN ] ∈ X. Since f is regular at Q and a 6= 0, there is a finite
set S ⊆M0

K such that for any v ∈M0
K \ S, we have |a|v = 1 and all coefficients

of f are defined in Ov. Recall that we may endow X with a metric dv, see Section
2.3.

For any v ∈ M0
K \ S, set rv := 1 and Uv := {x ∈ X(K)| dv(x,Q) < 1}. Since

df(Q) = 0, we see that for all x ∈ Uv, dv(f(x), Q) ≤ dv(x,Q)2, hence

lim
n→∞

fn(x) = Q.

For any v ∈ S, set rv := |a|v and Uv := {x ∈ X(K)| dv(x, q) < rv}. We see
that for all x ∈ Uv, dv(f(x), Q) ≤ dv(x,Q)2/rv, and again it follows that

lim
n→∞

fn(x) = Q.

For any v ∈M∞
K , since df(Q) = 0, there is rv > 0 such that for any x ∈ Uv :=

{x ∈ X(K)| dv(x, q) < rv} we have f(x) ⊆ Uv and

lim
n→∞

fn(x) = Q.
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If p ∈
⋃
v∈MK

Uv, Theorem 1.1 shows that C is periodic and this contradicts
our assumption. In other words, we need to estimate the height of a given point

p ∈ C(K) \
⋃

v∈MK

Uv.

If C intersects the line at infinity only at the point Q, then we may directly
estimate the height of p given by the embedding of C into PNK . Since we do not
assume that this is the case, we shall work first with a height induced by a divisor
on C given by the divisor Q, and then estimate hPN (p) using Proposition 7.2. To

do so, let i : C̃ → C ⊆ X be the normalization of C and pick a point Q′ ∈ i−1(Q).

There is a positive integer l such that lQ′ is a very ample divisor of C̃. So there

is an embedding j : C̃ ↪→ PM for some M > 0 such that

Q′ = [1 : 0 : · · · : 0] = H∞
⋂

C̃

where H∞ = {xM = 0} is the hyperplane at infinity. Let

g : C̃ → P1

be a morphism sending [x0 : · · · : xM ] ∈ C̃ to [x0 : xM ] ∈ P1. It is well defined

since {x0 = 0}
⋂
H∞

⋂
C̃ = ∅. Then g is finite and

g−1([1 : 0]) = H∞
⋂

C̃ = [1 : 0 · · · : 0].

By base change, we may assume that C̃, i, j, g are all defined over K.
In the function field case, there is a smooth projective curve D such that

K = k′(D); and in the number field case, we set D = SpecOK .

We consider the irreducible scheme C̃ ⊆ PMD over D whose generic fiber is C̃
and the irreducible scheme X ⊆ PND over D whose generic fiber is X. Then i

extends to a map ι : C̃ 99K X over D birationally to its image. For any v ∈M0
K ,

let
pv = {x ∈ Ov| v(x) > 0}

be a prime ideal in Ov. There is a finite set T consisting of those places v ∈
M0

K such that ι is not regular along the special fibre C̃Ov/pv at pv ∈ D or

C̃Ov/pk

⋂
H∞,Ov/pv 6= {[1 : 0 : · · · : 0]}.

For any v ∈M0
K \ T

⋃
S, observe that we have

Vv :={[1 : x1 : · · · : xM ] ∈ C̃(K)| |xi|v < 1, i = 1, · · · ,M}

={[1 : x1 : · · · : xM ] ∈ C̃(K)| |xM |v < 1} = g−1(Ωv)
⋂

C̃(K)

with Ωv := {[1 : x] ∈ P1(K)| |x|v < tv} and tv := 1.
For any v ∈ T

⋃
S
⋃
M∞

K , by the continuity of i, there is sv > 0 such that

i(Vv) ∈ Uv
where Vv = {[1 : x1 : · · · : xM ] ∈ C̃(K)| |xi|v < sv, i = 1, · · ·M}. Since g−1([1 :
0]) = {[1 : 0 : · · · : 0]}, there exists tv > 0, such that

g−1(Ωv)
⋂

C̃ ⊆ Vv



19

where Ωv = {[1 : x] ∈ P1(K)| |x|v < tv}.

We need to find an upper bound for the height of points in C(K) \
⋃
v∈MK

Uv.
Since the set Sing(C) of singular points of C is finite, we only have to bound the
height of points in C(K) \ (Sing(C)

⋃
v∈MK

Uv).

Let p be a point in C(K) \ (Sing(C)
⋃
v∈MK

Uv). Observe that i−1(p) ∈ C̃(K)

and x := j(i−1(p)) is also defined over K. We have x 6∈ Vv hence y := g(x) 6∈ Ωv

for all v ∈MK .
For any y = [y0 : y1] ∈ P1(K) \ (

⋃
v∈MK

Ωv), we have |y1/y0|v ≥ tv for all v. We
get the following upper bound

HP1(y)[K:Q] =
∏

v∈MK

max{|y0|v, |y1|v}nv

≤
∏

v∈MK

max{|y1|v/tv, |y1|v}nv

=
∏

v∈MK

|y1|nv
v

∏
v∈MK

max{1, 1/tv}nv

=
∏

v∈MK

max{1, 1/tv}nv =: B′ <∞.

By Proposition 7.2 applied to g : C̃ ↪→ PM and i : C̃ → PN , we get HPN (p) ≤ B
for some constant B independent on the choice of p as we require. �

8. Proof of Theorem A

Let C be a curve in A2
K . We want to show that for any point p ∈ A2(K) such

that the set

{n ∈ N| fn(p) ∈ C}
is infinite, then p is preperiodic.

According to Section 6, we may assume that λ(f) > 1. As in Section 7.3, we use
Theorem 2.4 to get a compactification X of A2

K . For simplicity, we also denote
by f the map induced by f on X. There exists n ≥ 1 such that fn contracts
X \ A2

K to a superattracting fixed point Q ∈ X \ A2
K . We extend C to a curve

in X. Suppose that C is not periodic. By Theorem 1.2, we may assume that
C(K) \ A2(K) = {Q}. Finally we fix an embedding X ↪→ PNK for some N ≥ 1.

We first treat the case K = Q.
There is a number field K ′ such that both f and p are defined over K ′. Then

fn(p) ∈ A2(K ′) for all n ≥ 0.
Proposition 7.5 and the Northcott Property imply that the set {fn(p)| n ≥

0}
⋂
C is finite. Since the set {n ∈ N| fn(p) ∈ C} is infinite, there exists n1 >

n2 > 0 such that fn1(p) = fn2(p). We conclude that p is preperiodic.

Next we consider the general case of an algebraically closed field K of charac-
teristic 0.
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By replacing K by an algebraically closed subfield over which p, C and f are
all defined, we may suppose that the transcendence degree tr.d.K/Q of K over
Q is finite. We argue by induction on tr.d.K/Q.

If tr.d.K/Q = 0, then K = Q and we are due by what precedes.
If tr.d.K/Q ≥ 1, then there is an algebraically closed subfield k of K such that

tr.d.k/Q = tr.d.K/Q− 1.
There is a smooth projective curve D over k, such that X, f, p,Q and C are

defined over the function field k(D) of D. Observe that K = k(D).
We consider the irreducible scheme

π : X ⊆ PND → D

over D whose generic fiber is X and C ⊆ PND the Zariski closure of C in X .
The map f extends to a birational map f ′ : X 99K X over D. For any x ∈ D,

denote by Xx and Cx the fiber of X and C at x respectively, and denote by fx
the restriction of map f ′ to the fiber Xx.

Proposition 7.5 implies that there is a number M ≥ 0 such that for all n ≥ 0
either fn(p) 6∈ C or HPN (fn(p)) ≤M.

A point s ∈ X(k(D)) is associated to its Zariski closure in X which is a section
of π : X → D. For simplicity, we also write s for this section. Then the height of
s is

HPN (s) = e(s·L)

where L := OPN
D

(1).
For any section s, observe that π induces an isomorphism from s to the curve

D. We may consider the Hilbert polynomial

χ(L⊗n, s) = 1− g(s) + n(s · L) = 1− g(D) + n logH(s).

It follows that there is a quasi-projective k-variety MH that parameterizes the
sections s of π such that HPN (s) ≤M (see [5]).

Let T1 be the set of points x ∈ D such that fx is birational and I(f−1x )
⋂
I(fx) 6=

∅. Observe that T1 is finite. Let T2 be the set of the points x ∈ D \ T1, such that
Cx is fixed. Since C is not fixed, T2 is finite. Because k is algebraically closed,
D \ (T1

⋃
T2) is infinite. For any point x ∈ D, denote by px : MH → Xx the map

sending s to s(x). Pick a sequence of distinct points {xi}i≥0 ⊆ D \ (T1
⋃
T2). For

any l ≥ 1, let

pl =
l∏

i=1

pxi : MH →
l∏

i=1

Xxi .

Observe that any two points s1, s2 ∈ MH are equal if and only if pi(s1) = pi(s2)
for all i ≥ 0.

We claim the following lemma, and prove it later.

Lemma 8.1. Let X be any reduced quasi-projective variety over an algebraically
closed field k. For any i ≥ 1, let πi : X → Yi be a morphism. If for any difference
points x1, x2 ∈ X, there exists i ≥ 0, such that πi(x1) 6= πi(x2), then for l large
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enough the map

pl =
l∏

i=1

πi : X →
l∏

i=1

Yi

is finite.

By Lemma 8.1, there is an integer L large enough, such that the map pL is
finite. By Proposition 5.1, Cxi is not periodic for all i ≥ 1. The set N := {n ≥
0|fn(p) ∈ C} is infinite, enumerate N = {n1 < n2 < · · · < ni < ni+1 < · · · }.
For any i ≥ 0, there exists si ∈ MH such that si = fni(p). By the induction
hypothesis, we know that sn0(xi) = fn0(p)(xi) is a preperiodic point of fxi for
any 1 ≤ i ≤ L. Then the orbit Gi of p(xi) in Xxi is finite. So the set

pL({si}i≥0) ⊆
L∏
i=0

Gi

is finite. Since pL is finite, then we have {si}i≥0 is finite. Then there is i1 > i2
such that si1 = si2 , and fni1 (p) = fni2 (p). Then p is preperiodic. �

Proof of Lemma 8.1. We prove this lemma by induction on the dimension of X.
If dimX = 0, then the result is trivial.
If dimX > 0, we may assume that X is irreducible. We pick any point x ∈ X,

and let Fl be the fiber of pl which contains x. Observe that

Fl+1 ⊆ Fl,

so that there is an integer L′ ≥ 1, such that for any L ≥ L′,

FL =
⋂
l≥0

Fl.

Since for any point x1 ∈ X − {x}, there exists i ≥ 0, such that πi(x1) 6= πi(x),
we have

FL =
⋂
l≥0

Fl = {x},

so that
dimX − dim pL(X) ≤ dimFL = 0.

In particular pL is generically finite. It means that there exists an open set U of
pL(X), such that pL : p−1L (U)→ U is finite. Set X ′ = X − p−1L (U), then we have
dimX ′ ≤ dimX − 1.

By the induction hypothesis, there is L′′ ≥ L′, such that for any L ≥ L′′, pL|X′
is finite and then pL is finite. �
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