In this paper, the design of a 10 mW concurrent triband RF rectifier at 1050 , 2050 and 2600 MHz using the high impedance transmission line with two short stubs is presented. Experimental results show that the efficiency is achieved 59.2 % at 1050 MHz, 35.6 % at 2050 MHz and 52.2 % at 2600 MHz. Compared to the state-of-the-art of multi-band rectifiers, the proposed triband rectifier has the ability to harvest RF energy from the corresponding operating frequencies sources.
This paper proposes a filter realised using only lumped-element components, implemented as a highly selective bandpass filter suitable for lowpass delta-sigma (LPΔΣ) RF transmitters. The proposed filter is characterised by low insertion loss, high selectivity and a transfer function tailored for filtering the close-up out-of-band noise of LPΔΣ RF transmitters. The circuit design is based on a modified loaded-stub ring-resonator structure, however, implemented using 4 π-shape lumped-element resonators with LC tanks. The measurements show good agreement with simulation and the proposed filter provides a fractional 3-dB bandwidth of 14.3 %, insertion loss of less than 1.6 dB, suppression of more than 18 dB on both sides of the desired band, and a sharp cut-off frequency response. This filter is combined with the delta-sigma transmitter to show the effective reduction of the out-of-band quantisation noise signals.
This paper proposes an energy recovery rectifier suitable for the use in outphasing and/or linear amplification with nonlinear components (LINC) transmitters. The proposed application oriented rectifier consists of a high-efficiency resistive rectifier and a stepped-impedance resonator (SIR) which stores the energy in order to reduce load sensitivity of the circuit. The rectifier is designed including harmonic frequency control to improve conversion efficiency and to provide a resistive input impedance at the fundamental frequency. The proposed rectifier has been implemented in hybrid technology. The fabricated circuit provides peak RF-to-DC efficiency of 73.5 % at 2.3 GHz and more than 60 % over a dynamic range of 8 dB. Furthermore, measurements show good agreement with simulation results.
This paper presents a dual-band rectifying circuit for wireless power transmission working at 2.45 GHz and 5.8 GHz. A modified dual-band matching network is adopted to realize the highly efficient dual-band rectifier. Source-pull simulations are performed, to determine the proper impedances at the two different frequencies. The proposed dual-band rectifier has been implemented and the measurements show good agreement with simulation. With a dual-band input matching network, the measurement results for an input power level of 10 mW show peak RF-to-DC efficiencies of 66.8 % and 51.5 % at 2.45 GHz and 5.8 GHz respectively.
Zheng Y, Sun X, Li X, Zhang H. Flexible parylene-based folded inductors with magnetic core. Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on. 2013:2261-2264.
Li Z, Han M, Zhang H. A novel MEMS electromagnetic energy harvester with series coils. Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on. 2013:2245-2248.