科研成果

2022
Du D, Wu Z, Lu C. In what stressful context does self-efficacy promote job performance? The roles of challenge–hindrance stressors. International Journal of Stress Management [Internet]. 2022. 访问链接
Xu W. Increasing importance of ammonia emission abatement in PM2.5pollution control. Science Bulletin [Internet]. 2022. 访问链接
Tian L, Wang H, Wu T, Yang H, Xu S, Chai X, Zhang K. In-depth analysis of ultrasonic-induced geological pore re-structures. Ultrasonics Sonochemistry [Internet]. 2022;85:105990. 访问链接Abstract
Understanding and manipulating geological pore structures is of paramount importance for geo-energy productions and underground energy storages in porous media. Nevertheless, research emphases for long time have been focused on understanding the pore configurations, while few work conducted to modify and restructure the porous media. This study deploys ultrasonic treatments on typical geological in-situ core samples, with follow-up processes of high-pressure mercury injections and nitrogen adsorptions and interpretations from nuclear magnetic resonance and x-ray diffraction. The core permeability and porosity are found to increase by 8.3 mD, from 4.1 to 12.4 mD, and by 0.95%, from 14.03% to 14.98%, respectively. Meanwhile, the number and size of the micro- and mesopore are increased with progressing of ultrasonic treatment, while those of the macropore decrease, which finally increase the permeability and porosity. The increase of micro- and mesopore number, from x-ray diffraction results, is attributed to the migration and precipitation of clay minerals caused through ultrasonic wave. The relocation of clay minerals also helps to improve the pore-throat connectivity and modify the micro-scale heterogeneity. Basically, this study reveals the characterizations of geological pore reconfigurations post-ultrasonic treatments and interprets the associated mechanisms, which provides guidance to manipulate the geological pores and be of benefit for further porous media use in science and engineering.
Zhao X, Zhang Q, Ji Y, Liu H, Lou VW. Influence of spousal caregiving and living arrangement on depression among husband caregivers in rural China. Aging & Mental Health [Internet]. 2022. 访问链接
Tang J, Zhu H, Guo J. Information diffusion between users in open data ecosystem: modelling and simulation analysis. Mathematical Problems in Engineering. 2022;2022(1):2892274.
Luo Y, Xiang K, Liu J, Song J, Feng J, Chen J, Dai Y, Hu Y, Zhuang H, Zhou Y. Inhibition of In Vitro Infection of Hepatitis B Virus by Human Breastmilk. Nutrients [Internet]. 2022;14(8):1561. 访问链接Abstract
Despite the presence of hepatitis B virus (HBV) in the human breastmilk of mothers infected with HBV, it has been shown that breastfeeding does not increase the risk of mother-to-child transmission (MTCT) of HBV. We tested the hypothesis that human breastmilk may contain active components that bind to HBV and inhibit the infectivity of HBV. The results show that human whey significantly inhibited the binding of the hepatitis B surface antigen (HBsAg) to its antibodies in competitive inhibition immunoassays. The far-western blotting showed that HBsAg bound to a protein of 80 kD in human whey, which was identified as lactoferrin by mass spectrometry. Competitive inhibition immunoassays further demonstrated that both human lactoferrin and bovine lactoferrin bound to HBsAg. Human whey, human lactoferrin, and bovine lactoferrin each significantly inhibited the infectivity of HBV in vitro. Our results indicate that human breastmilk can bind to HBsAg and inhibit the infectivity of HBV, and the active component is lactoferrin. The findings may explain the reason that breastfeeding has no additional risk for MTCT of HBV, although human breastmilk contains HBV. Our study provides experimental evidence that HBV-infected mothers should be encouraged to breastfeed their infants.
Siavashi J, Najafi A, Sharifi M, Fahimpour J, Shabani M, Liu B, Liu K, Yan J, Ostadhassan M. An insight into core flooding experiment via NMR imaging and numerical simulation. Fuel [Internet]. 2022;318:123589. 访问链接Abstract
Traditional core flooding experiments can only be used post breakthrough while what happens in the core prior to this time is vital to understand multiphase flow phenomenon for more successful EOR operations. We can overcome this obstacle through a visualized fluid displacement scheme. This can ultimately provide us with a reliable relative permeability curve that can lead to a more accurate reservoir simulation outcome in the field scale. In this study, NMR imaging is employed in a water flood experiment in conjunction with two separate numerical two-phase flow simulation methods (FDM and FEM), to reproduce experimental data. Using the Brooks-Corey equation, random pore size distribution indices (λ) are selected to generate relative permeability curves. Moreover, simulations are performed with FDM, and oil displacement efficiency, saturation maps, and saturation profiles are generated and compared to the experimental results. Next, FEM was employed in COMSOL for further validation and FDM results were found in agreement with the experiments. This way, an appropriate relative permeability curve was generated and assigned to the sample. Results suggest that λ of 0.2 generated the best numerical results with an MSE value of 0.009 in oil displacement efficiency curves, comparable to the experiments. Collectively, integration of imaging techniques with routine experimental fluid displacement procedures presented a detailed insight into complicated nature of multiphase flow phenomena in geomaterials.
Zhang P, Zhou P, Peng J, Liu Y, Zhang H, He C, Xiong Z, Liu W, Lai B. Insight into metal-free carbon catalysis in enhanced permanganate oxidation: Changeover from electron donor to electron mediator. Water Research [Internet]. 2022;219:118626. 访问链接Abstract
Reports that the exploitation of metal-free carbon materials to enhance permanganate (PM) oxidation to abate organic pollution in water have emerged in recent publications. However, the activation mechanism and active sites involved are ambiguous because of the intricate physicochemical properties of carbon. In this study, reduced graphene oxide (rGO) as a typical carbon material exhibits excellent capability to boost permanganate oxidation for removing a wide array of organic contaminants. The simultaneous two reaction pathways in the rGO/PM system were justified: i) rGO donates to electrons to decompose PM and produce highly reactive intermediate Mn species for oxidizing organic contaminants; ii) rGO mediates electron transfer from organics to PM. Oxygen-containing groups (hydroxyl, carboxyl, and carbonyl) were justified as electron-donating groups, while structural defects (vacancy and edge defects) were shown to be critical for rGO-mediated electron transfer. Therefore, the oxidation pathway of the rGO/PM system can be controlled by regulating oxygen functional groups and structural defects. The changeover from electron donor to electron mediator by decorating surface active sites of carbon materials will be of great help to the design and application of carbocatalysts.
Jia L, Sun H, Zhou Q, Dai R, Wu W. Integrated evaluation for advanced removal of nitrate and phosphorus in novel PHBV/ZVI-based biofilters: Insight into functional genes and key enzymes. JOURNAL OF CLEANER PRODUCTION. 2022;349.Abstract
Effective control of nitrogen and phosphorus simultaneously is of great significance to satisfy the strict requirement of the ecological health of receiving waters. In this study, PHBV/ZVI composites made from solid carbon (poly-3-hydroxybutyrate-cohyroxyvelate, PHBV) and zero-valent iron (ZVI) were proposed to be functional fillers in biofilters for advanced wastewater treatment. Results showed that high-rate treatment performance was obtained with nitrate and phosphorus removal efficiencies of 79-97% and 97-98% in the biofilters packed with PHBV/ZVI composites. Lower N2O and CH4 emission (56.3-129.2 mu g m(-2) h(-1)) were also achieved simultaneously, further indicating the superiority of PHBV/ZVI composites applied in the wastewater treatment. High-throughput quantitative-PCR (HT-qPCR) results uncovered that the existence of ZVI could enrich carbon degradation genes (manA, gam and mxa) and facilitate denitrifier utilize organic matters more efficiently, as evidenced by up-regulations of genes involved in nitrate reduction (nirS and nosZ). Meanwhile, higher Fe concentration and less functional genes inducing lower activities of phosphate metabolism and in PHBV/ZVI systems indicated ZVI corrosion and coprecipitation were the main pathway of phosphorus removal. Network and redundancy analysis highlighted the role of ZVI in the removal of pollutants with keystone genes changed (pox and napA) and genes distribution remodeled compared to single PHBV fillers. Further, the activities of dehydrogenase (DHA) and nitrite reductase (Nir) enzymes also increased by the modulation of microbes, which explicitly interpreted the synergistic promotion of PHBV and ZVI on the denitrification process. These findings provided an alternative for the advanced treatment of wastewater and improve the understanding of C, N and P cycling in the co-occurrence of PHBV and ZVI.
Lyu L, Leugger F, Hagen O, Fopp F, Boschman LM, Strijk JS, Albouy C, Karger DN, Brun P, Wang Z, et al. An integrated high-resolution mapping shows congruent biodiversity patterns of Fagales and Pinales. New Phytologist. 2022;n/a.Abstract
Summary The documentation of biodiversity distribution through species range identification is crucial for macroecology, biogeography, conservation, and restoration. However, for plants, species range maps remain scarce and often inaccurate. We present a novel approach to map species ranges at a global scale, integrating polygon mapping and species distribution modelling (SDM). We develop a polygon mapping algorithm by considering distances and nestedness of occurrences. We further apply an SDM approach considering multiple modelling algorithms, complexity levels, and pseudo-absence selections to map the species at a high spatial resolution and intersect it with the generated polygons. We use this approach to construct range maps for all 1957 species of Fagales and Pinales with data compilated from multiple sources. We construct high-resolution global species richness maps of these important plant clades, and document diversity hotspots for both clades in southern and south-western China, Central America, and Borneo. We validate the approach with two representative genera, Quercus and Pinus, using previously published coarser range maps, and find good agreement. By efficiently producing high-resolution range maps, our mapping approach offers a new tool in the field of macroecology for studying global species distribution patterns and supporting ongoing conservation efforts.
Integrated Traditional Chinese Medicine Improves Functional Outcome in Acute Ischemic Stroke: from Clinic to Mechanism Exploration with Gut Microbiota. Frontiers in Cellular and Infection Microbiology [Internet]. 2022;12(827129). 访问链接
Peng W, Ou Y. Integrating air quality and health considerations into power sector decarbonization strategies. Environmental Research Letters. 2022;17(8).
Integration of BEoL Compatible 1T1C FeFET Memory Into an Established CMOS Technology
Lehninger D, Mähne H, Ali T, Hoffmann R, Olivo R, Lederer M, Mertens K, Kämpfe T, K. Integration of BEoL Compatible 1T1C FeFET Memory Into an Established CMOS Technology. 2022 IEEE International Memory Workshop (IMW) [Internet]. 2022:1-4. 访问链接Abstract
Recently, hafnium oxide based ferroelectric memories gained great attention due to good scalability, high speed operation, and low power consumption. In contrast to the FRAM concept, the FeFET offers non-destructive read-out. However, the integration of the FeFET into an established CMOS technology entails several challenges. Herein, an 1T1C FeFET with separated transistor (1T) and ferroelectric capacitor (1C) is described and demonstrated. This alternative approach can be integrated into standard process technologies without introducing significant modifications of the front-end-of-line. All important steps starting from the integration of MFM devices into the BEoL through the fabrication and characterization of single 1T1C memory cells with various capacitor area ratios for bit cell tuning up to the initial demonstration of an 8 kbit test-array are covered.
Gao X, Zhang H, Liu M, Shen L, Pan DZ, Lin Y, WANG R, HUANG R. Interactive Analog Layout Editing with Instant Placement and Routing Legalization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2022:1-1.Abstract
Analog layout design is still primarily reliant on manual efforts. Current fully automated workflows are unable to meet the expectations for flexible customization and are incompatible with existing manual workflows. For both performance and productivity, interactive layout editing has the ability to bridge the gap between manual and automated flows. We present an interactive layout editing system in this study that includes well-defined commands for both placement and routing customization. This is a pioneering work that provides a holistic study on the interactive design methodology for analog layouts and its capability of speeding up design closure. Our framework comes up with instant placement legalization and routing adjustment mechanism for rapid layout update and modification. The framework is capable of handling realtime user interaction and improving the performance of fully automated layout generators verified by post-layout simulation on real-world analog designs. Experimental results demonstrate the performance enhancement on real-world analog designs with only a few editing commands. As examples, on the low-dropout regulator, our framework can reduce the overshot down and up voltage to nearly 1=3 of layout generated by automation tool with two editing commands, and on the operational transconductance amplifier, it achieves 33:5% better common mode rejection ratio with only one command.
Zhang G, Hu R-Z, Xie P, Lu K, Lou S, Liu X, Li X, Wang F, Wang Y, Yang X, et al. Intercomparison of OH radical measurement in a complex atmosphere in Chengdu, China. Science of The Total Environment. 2022;838:155924.
Qi J, Yang X, Pan P-Y, Huang T, Yang X, Wang C-C, Liu W. Interface Engineering of Co(OH)2 Nanosheets Growing on the KNbO3 Perovskite Based on Electronic Structure Modulation for Enhanced Peroxymonosulfate Activation. Environmental Science & Technology [Internet]. 2022;56:5200-5212. 访问链接
Gu J, Tang Z, Guo H, Chen YE, Xiao J, Chen Z, Xiao L. Intermolecular TADF: bulk and interface exciplexes. JOURNAL OF MATERIALS CHEMISTRY C. 2022;10:4521-4532.
Qinghe XIAO. Interpretation and Divergence: Response to the Dissemination of Jesus’s Image in Ming and Qing Society. In: Beyond Indigenization: Christianity and Chinese History in a Global Context. Brill; 2022. pp. 116-149.
Chen X, Wang H, Lu K. Interpretation of NO3–N2O5 observation via steady state in high-aerosol air mass: the impact of equilibrium coefficient in ambient conditions. Atmospheric Chemistry and Physics. 2022;22:3525-3533.
Cai P, Li H, Liu Z, Zhu T, Zeng M, JI Z, Wu Y, Padovani A, Larcher L, Pešić M, et al. Investigation of Coercive Field Shift During Cycling in HfZrOₓ Ferroelectric Capacitors. IEEE Transactions on Electron Devices. 2022;69:2384–2390.

Pages