科研成果

2019
Dedema, Zhang P. "Happy Rides Are All Alike; Every Unhappy Ride Is Unhappy in Its Own Way": Passengers' Emotional Experiences while Using a Mobile Application for Ride-sharing, in iConference 2019. Washington DC; 2019.
Yi F, Jiang T. Hard Frame Detection and Online Mapping for Surgical Phase Recognition, in Medical Image Computing and Computer Assisted Intervention - MICCAI 2019 - 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part V.Vol 11768. Springer; 2019:449–457. 访问链接
LIU K, CUI X, ZHONG Y, KUANG Y, Wang Y, TANG H, HUANG R. A Hardware Implementation of SNN-based Spatio-temporal Memory Model. Frontiers in Neuroscience [Internet]. 2019;13(8):835. 访问链接
Zhang X, Jin Y, Dai H, Xie Y, Zhang S. Health and economic benefits of cleaner residential heating in the Beijing–Tianjin–Hebei region in China. Energy Policy. 2019;127:165–178.
Zhang J, Adcock I, Bai Z, Chung KF, Duan X, Fang Z, Gong J, Li F, Miller R, Qiu X, et al. Health effects of air pollution: what we need to know and to do in the next decade. Journal of Thoracic Disease [Internet]. 2019;11(4):1727-1730. 访问链接
Zhang JJ, Adcock IM, Bai Z, Chung KF, Duan X, Fang Z, Gong J, Li F, Miller RK, Qiu X, et al. Health effects of air pollution: what we need to know and to do in the next decade. Journal of thoracic disease. 2019;11:1727.
Yang T, Zhang H, Li J, Gong J, Uhlig S, Chen S, Li X. HeavyKeeper: An Accurate Algorithm for Finding Top-$ k $ Elephant Flows. IEEE/ACM Transactions on Networking. 2019;27:1845–1858.
周琪, 陈永强. Helmholtz边界积分方程中奇异积分间接求解方法. 计算力学学报. 2019;36:576-582.Abstract
提出了间接求解传统Helmholtz边界积分方程CBIE的强奇异积分和自由项系数,以及Burton-Miller边界积分方程BMBIE中的超强奇异积分的特解法。对于声场的内域问题,给出了满足Helmholtz控制方程的特解,间接求出了CBIE中的强奇异积分和自由项系数。对于声场外域对应的BMBIE中的超强奇异积分,按Guiggiani方法计算其柯西主值积分需要进行泰勒级数展开的高阶近似,公式繁复,实施困难。本文给出了满足Helmholtz控制方程和Sommerfeld散射条件的特解,提出了间接求出超强奇异积分的方法。推导了轴对称结构外场问题的强奇异积分中的柯西主值积分表达式,并通过轴对称问题算例证明了本文方法的高效性。数值结果表明,对于内域问题,采用本文特解法的计算结果优于直接求解强奇异积分和自由项系数的结果,且本文的特解法可避免针对具体几何信息计算自由项系数,因而具有更好的适用性。对于外域问题,两者精度相当,但本文的特解法可避免对核函数进行高阶泰勒级数展开,更易于数值实施。
Li S, Wan Y, He P, Wang C, Sun J, Zhang Y, Li X, Xie G. HeROS: A simulation platform for heterogeneous robotic swarms, in 2019 Chinese Control Conference (CCC). IEEE; 2019:7223–7228. 访问链接
Zhang Y, Wu C, Wang D, Zhang Z, Qi X, Zhu N, Liu G, Li X, Hu H, Chen Z, et al. High Efficiency (16.37%) of Cesium Bromide-Passivated All-Inorganic CsPbI2Br Perovskite Solar Cells. SOLAR RRL. 2019;3.
Zhang Y, Wu C, Wang D, Zhang Z, Qi X, Zhu N, Liu G, Li X, Hu H, Chen Z, et al. High Efficiency (16.37%) of Cesium Bromide-Passivated All-Inorganic CsPbI2Br Perovskite Solar Cells. SOLAR RRL. 2019;3.Abstract
All-inorganic CsPbI2Br perovskite has attracted increasing attention, owing to its outstanding thermal stability and suitable bandgap for optoelectronic devices. However, the substandard power conversion efficiency (PCE) and large energy loss (E-loss) of CsPbI2Br perovskite solar cells (PSCs) caused by the low quality and high trap density of perovskite films still limit the application of devices. Herein, the post-treatment of evaporating cesium bromide (CsBr) is utilized on top of the perovskite surface to passivate the CsPbI2Br-hole-transporting layer interface and reduce E-loss. The results of microzone photoluminescence indicate that the evaporated CsBr gathered at the grain boundaries of CsPbI2Br layers and Br-enriched perovskites (CsPbIxBr3-x, x < 2) are formed, which can provide protection for CsPbI2Br. Therefore, the gaps between crystal grains are filled up, and the recombination loss of the all-inorganic CsPbI2Br PSCs is reduced accordingly. The champion device exhibits high open-circuit voltage and a PCE of 1.271 V and 16.37%, respectively. This is the highest reported PCE among all-inorganic CsPbI2Br PSCs reported so far. In addition, the stability of CsPbI2Br PSCs is effectively improved by CsBr passivation, and the device without encapsulation can retain 86% of its initial PCE after 1368 h of storage, which is beneficial for practical applications.
Zhang Y, Wu C, Wang D, Zhang Z, Qi X, Zhu N, Liu G, Li X, Hu H, Chen Z, et al. High Efficiency (16.37%) of Cesium Bromide-Passivated All-Inorganic CsPbI2Br Perovskite Solar Cells. SOLAR RRL. 2019;3.Abstract
All-inorganic CsPbI2Br perovskite has attracted increasing attention, owing to its outstanding thermal stability and suitable bandgap for optoelectronic devices. However, the substandard power conversion efficiency (PCE) and large energy loss (E-loss) of CsPbI2Br perovskite solar cells (PSCs) caused by the low quality and high trap density of perovskite films still limit the application of devices. Herein, the post-treatment of evaporating cesium bromide (CsBr) is utilized on top of the perovskite surface to passivate the CsPbI2Br-hole-transporting layer interface and reduce E-loss. The results of microzone photoluminescence indicate that the evaporated CsBr gathered at the grain boundaries of CsPbI2Br layers and Br-enriched perovskites (CsPbIxBr3-x, x < 2) are formed, which can provide protection for CsPbI2Br. Therefore, the gaps between crystal grains are filled up, and the recombination loss of the all-inorganic CsPbI2Br PSCs is reduced accordingly. The champion device exhibits high open-circuit voltage and a PCE of 1.271 V and 16.37%, respectively. This is the highest reported PCE among all-inorganic CsPbI2Br PSCs reported so far. In addition, the stability of CsPbI2Br PSCs is effectively improved by CsBr passivation, and the device without encapsulation can retain 86% of its initial PCE after 1368 h of storage, which is beneficial for practical applications.
Zhu N, Qi X, Zhang Y, Liu G, Wu C, Wang D, Guo X, Luo W, Li X, Hu H, et al. High Efficiency (18.53%) of Flexible Perovskite Solar Cells via the Insertion of Potassium Chloride between SnO2 and CH3NH3PbI3 Layers. ACS APPLIED ENERGY MATERIALS. 2019;2:3676+.Abstract
Flexible perovskite solar cells (PSCs) were ideal candidates for wearable devices due to the merits of flexibility, high efficiency, and being lightweight, and they could be fabricated in a continuous roll-to-roll production process to achieve large-area and low cost devices. Herein, the high efficiency (up to 18.53%) and fill factor (0.81) of flexible PSCs (ITO/SnO2/KCl/MAPbI(3)/spiro-OMeTAD/Ag) were achieved by low-pressure assisted solution processing under low temperature (<= 100 degrees C). The surface morphology and crystallinity of perovskite films were effectively promoted by the KCl modification and the defect density of perovskite films as well as the hysteresis of the corresponding devices was reduced accordingly. In addition, the stability and bendability of the KCl-modified flexible PSCs were improved simultaneously. To the best of our knowledge, both the efficiency and fill factor are the best among all flexible PSCs reported to date. Therefore, the insertion of KCl between SnO2 and MAPbI(3) layers provided a promising strategy for highly efficient flexible PSCs fabricated in low temperature (<= 100 degrees C) conditions.
Zhu N, Qi X, Zhang Y, Liu G, Wu C, Wang D, Guo X, Luo W, Li X, Hu H, et al. High Efficiency (18.53%) of Flexible Perovskite Solar Cells via the Insertion of Potassium Chloride between SnO2 and CH3NH3PbI3 Layers. ACS APPLIED ENERGY MATERIALS. 2019;2:3676+.Abstract
Flexible perovskite solar cells (PSCs) were ideal candidates for wearable devices due to the merits of flexibility, high efficiency, and being lightweight, and they could be fabricated in a continuous roll-to-roll production process to achieve large-area and low cost devices. Herein, the high efficiency (up to 18.53%) and fill factor (0.81) of flexible PSCs (ITO/SnO2/KCl/MAPbI(3)/spiro-OMeTAD/Ag) were achieved by low-pressure assisted solution processing under low temperature (<= 100 degrees C). The surface morphology and crystallinity of perovskite films were effectively promoted by the KCl modification and the defect density of perovskite films as well as the hysteresis of the corresponding devices was reduced accordingly. In addition, the stability and bendability of the KCl-modified flexible PSCs were improved simultaneously. To the best of our knowledge, both the efficiency and fill factor are the best among all flexible PSCs reported to date. Therefore, the insertion of KCl between SnO2 and MAPbI(3) layers provided a promising strategy for highly efficient flexible PSCs fabricated in low temperature (<= 100 degrees C) conditions.
Zhu N, Qi X, Zhang Y, Liu G, Wu C, Wang D, Guo X, Luo W, Li X, Hu H, et al. High Efficiency (18.53%) of Flexible Perovskite Solar Cells via the Insertion of Potassium Chloride between SnO2 and CH3NH3PbI3 Layers. ACS APPLIED ENERGY MATERIALS. 2019;2:3676-3682.Abstract
Flexible perovskite solar cells (PSCs) were ideal candidates for wearable devices due to the merits of flexibility, high efficiency, and being lightweight, and they could be fabricated in a continuous roll-to-roll production process to achieve large-area and low cost devices. Herein, the high efficiency (up to 18.53%) and fill factor (0.81) of flexible PSCs (ITO/SnO2/KCl/MAPbI(3)/spiro-OMeTAD/Ag) were achieved by low-pressure assisted solution processing under low temperature (<= 100 degrees C). The surface morphology and crystallinity of perovskite films were effectively promoted by the KCl modification and the defect density of perovskite films as well as the hysteresis of the corresponding devices was reduced accordingly. In addition, the stability and bendability of the KCl-modified flexible PSCs were improved simultaneously. To the best of our knowledge, both the efficiency and fill factor are the best among all flexible PSCs reported to date. Therefore, the insertion of KCl between SnO2 and MAPbI(3) layers provided a promising strategy for highly efficient flexible PSCs fabricated in low temperature (<= 100 degrees C) conditions.
Zhu N, Qi X, Zhang Y, Liu G, Wu C, Wang D, Guo X, Luo W, Li X, Hu H, et al. High Efficiency (18.53%) of Flexible Perovskite Solar Cells via the Insertion of Potassium Chloride between SnO2 and CH3NH3PbI3 Layers. ACS APPLIED ENERGY MATERIALS. 2019;2:3676+.
Chen Z, Shao S, Cai W. A high order efficient numerical method for 4-D Wigner equation of quantum double-slit interferences. Journal of Computational Physics [Internet]. 2019;396:54-71. 访问链接Abstract
We propose a high order numerical method for computing time dependent 4-D Wigner equation with unbounded potential and study a canonical quantum double-slit interference problem. To address the difficulties of 4-D phase space computations and higher derivatives from the Moyal expansion of nonlocal pseudo-differential operator for unbounded potentials, an operator splitting technique is adopted to decompose the 4-D Wigner equation into two sub-equations, which can be computed analytically or numerically with high efficiency. The first sub-equation contains only linear convection term in $(\bm x, t)$-space and can be solved with an advective method, while the second involves the pseudo-differential term and can be approximated by a plane wave expansion in $\bm k$-space. By exploiting properties of Fourier transformation,  the expansion coefficients for the second sub-equation have explicit forms and the resulting scheme is shown to be unconditionally stable for any higher derivatives of the Moyal expansion, ensuring the feasibility of the 4-D Wigner numerical simulations for quantum double-slit interferences. Numerical experiments demonstrate the spectral convergence in $(\bm x, \bm k)$-space and provide highly accurate information on the number, position, and intensity of the interference fringes for different types of slits, quantum particle masses, and initial states (pure and mixed).
Wang M, Tian M, Zhang Z, Li S, WANG R, Gu C, Shan X, Xiong X, Li X, HUANG R, et al. High performance gigahertz flexible radio frequency transistors with extreme bending conditions, in 2019 IEEE International Electron Devices Meeting (IEDM). IEEE; 2019:8–2.
Li Y, Qi X, Liu G, Zhang Y, Zhu N, Zhang Q, Guo X, Wang D, Hu H, Chen Z, et al. High performance of low-temperature processed perovskite solar cells based on a polyelectrolyte interfacial layer of PEI. ORGANIC ELECTRONICS. 2019;65:19-25.
Li Y, Qi X, Liu G, Zhang Y, Zhu N, Zhang Q, Guo X, Wang D, Hu H, Chen Z, et al. High performance of low-temperature processed perovskite solar cells based on a polyelectrolyte interfacial layer of PEI. ORGANIC ELECTRONICS. 2019;65:19-25.Abstract
Perovskite solar cells (PSCs) have been paid more attention because of its high power conversion efficiency (PCE) and flexible applications. Low temperature process for PSCs is critical for high performance flexible devices and industrial applications. Herein, the photovoltaic properties of the PSCs based on a polyelectrolyte interfacial layer of polyethyleneimine (PEI) were studied in this work and the configuration of PSCs was indium fin oxide (ITO)/PEI/SnO2/perovskite/spiro-OMeTAD/Ag. Due to the spin-coated PEI on ITO substrates, smooth cathodes (ITO/PEI) with low work function were obtained and the champion PCE of 19.36% and 16.81% for the rigid and flexible devices respectively was achieved accordingly. Moreover, the PCE of the rigid and flexible PSCs with PEI (0.1 mg mL(-1)) remained similar to 95% and similar to 90% of the initial values respectively after 80 days in ambient conditions. Meanwhile, the PCE of the flexible PSCs based on PEI (0.1 mg mL(-1)) remained 85% of the initial value after 100 bending cycles and the bendability of the flexible PSCs was improved accordingly. All the experimental data implied that the fabrication of PEI onto ITO electrodes was an effective way to promote the photovoltaic properties of the low-temperature processed rigid and flexible PSCs.

Pages