Understanding the nanoconfined water-CO2 interactions at the molecular scale is of great importance for the fluid transport in confined porous media. Here, a series typical water film and water bridge scenarios are determined, and the associated impacts on nanoconfined water-CO2 interactions as well as the geological hydrocarbon recovery and CO2 storage are investigated in nanopores. Our results confirm either in water film or water bridge scenarios, the competitive adsorptions of nanoconfined water and CO2 reduce the adsorbed water amount and derive the new water bridge with CO2 additions. Such a phenomenon indicates the substrate surface shifts from water-wet to partially CO2-wet, with lower fluid molecule diffusions and illite-water-CO2 sandwich-structured adsorption layer. Overall, our work investigates the mechanism of CO2 effects on distributions and aggregations of nanoconfined water molecules in nanopores, which also provides molecular-scale insights into the nanoconfined water-CO2 interactions in the processes of geological CO2 storage and utilization.
The transfer of farmland is an important area of rural development research; however, the impact of rural social networks has been neglected in studies. The aim of this study is to explore the effects, mechanisms, and heterogeneity of neighbors’ behavior on the process of land renting by farmers. Based on the data of the China Family Panel Studies in 2018, this research empirically analyzes the impact of community-level, local social interactions on the land rental behavior of farmers and its mechanisms using a spatial probit model. The results of this study indicate that neighbors’ land rental behavior positively and significantly affects that of other farmers in the same village. In addition, neighbors’ land rental encourages other farmers in the same village to follow suit through an increase in the perceived importance of the Internet among the farmers. In addition, there is heterogeneity in neighborhood influence. Notably, the impact of social networks on the renting out of the land by farmers, as evidenced in this study, is a key factor in accelerating the circulation of rural land and promoting rural development, thus contributing to the process of rural revitalization and its recording in the literature.
Nitrogen (N) is the most abundant element in Earth's atmosphere, but is extremely depleted in the silicate Earth. However, it is not clear whether core sequestration or early atmospheric loss was responsible for this depletion. Here we study the effect of core formation on the inventory of nitrogen using laser-heated diamond anvil cells. We find that, due to the simultaneous dissolution of oxygen in the metal, N becomes much less siderophile (iron-loving) at pressures and temperatures up to 104 GPa and 5000 K, a thermodynamic condition relevant to the bottom of the magma ocean in the aftermath of the moon-forming giant impact. Using a core–mantle–atmosphere coevolution model, we show that the impact-induced processes (core formation and/or atmospheric loss) are unlikely to account for the observed N anomaly, which is instead best explained by the accretion of mainly N-poor impactors. The terrestrial volatile pattern requires severe N depletion on precursor bodies, prior to their accretion to the proto-Earth.
ABSTRACT Climate change requires an immediate transition from fossil fuels to clean energy sources. Although hydrogen is considered a future energy source, over 90% of hydrogen is currently produced from fossil fuels, and large-scale renewable-fed hydrogen processes are limited by current technologies and economic processes. Therefore, hydrogen production from fossil fuels is a significant topic, particularly if fossil fuel-fed hydrogen production and utilization can be absolutely carbon-free. For the first time, this review critically discusses and analyzes the current advances and fundamentals of fossil fuel dehydrogenation from the perspective of techno-economic-environmental assessments while considering all potential fossil resources and hydrogen technology. This review concludes that the preference of fossil fuels for any hydrogen production technology is as follows: fossil gas > heavy fossil liquid > light fossil liquid > fossil minerals. Thermo-catalytic hydrocarbon decomposition can outperform most other hydrocarbon reforming and pyrolysis processes owing to its energy efficiency, economic effectiveness, and environmental friendliness. Further, we explore potentially new “green hydrogen” technology and confirm that fossil fuels could be completely decarbonized throughout the full-chain stages from exploration to production and consumption. Overall, this work reveals that fossil fuels can be utilized completely carbon-free and provides technical support for future fossil fuel dehydrogenation and energy decarbonization in academic research, industrial practice, and governmental strategies.
It is significant to accurately evaluate the relative permeability of oil–water two phase for multiphase seepage in porous media in low permeability and tight oil reservoir. However, stress sensitivity is an important characteristic for low permeability and tight oil reservoir. It is an effective way for fractal theory to describe the complexity and heterogeneity of the microstructure of porous media. To describe the relative permeability of oil–water two phase in porous media with complex and irregularity pores, a new relative permeability model oil–water two phases is proposed by the fractal theory and the stress sensitivity is taken into the established model in this paper. Meanwhile, the effects of effective stress, elastic modulus, porosity, maximum and minimum flow radius on oil–water relative permeability are analyzed. The new model is verified by comparing with the laboratory data and the results demonstrate that irreducible water and residual oil saturation have a negative correlation with effective stress. The relative permeability of the oil–water two-phase will shrink to the middle as the rise of effective stress, and the region of co-infiltration will decrease. The deformation quantity of porous media, irreducible water and residual oil saturation will increase as the elastic modulus decreases. The larger the maximum flow radius is, the lower the irreducible water saturation and residual oil saturation is. Both the porosity and the minimum flow radius have slight influences on the relative permeability of oil–water two-phase. The proposed relative permeability model can effectively predict the relative permeability of oil and water and help to describe and reveal the multiphase flow in porous media.
Injecting CO2 into depleted gas reservoirs can sequester greenhouse gases and simultaneously enhancing gas recovery, which has significant environmental and economic benefits. Natural gas resources in tight sandstone reservoirs are huge, but the gas production decreases rapidly and the gas recovery is low due to poor reservoir properties. When these gas reservoirs are depleted, the implementation of CO2 flooding has greater potential to improve gas production and store CO2. However, the production characteristics of the CO2 flooding process and application potential in tight gas reservoirs at the field scale are not yet clear. To fully understand the production mechanism of the CO2 flooding and evaluate the technical feasibility, based on the geological data of the Sulige gas field in the Ordos Basin, a 3D numerical simulation model under the five-point well pattern is established. The production behavior of enhanced gas recovery and CO2 storage processes is studied through numerical simulation approach. Results indicate that the CH4 production rate is significantly increased after CO2 flooding, and the gas recovery can be increased by up to 19.2%, confirming the feasibility of CO2 injection to enhance CH4 production in depleted tight gas reservoirs. Once the CO2 breakthrough occurs, the CH4 production rate decreases rapidly, and the CO2 distribution is only slightly affected by the gravity difference of the components. These characteristics are significantly different from those of high-permeability gas reservoirs. The CO2 front in the early stage is proportional to the square root or cube root of time, depending on the perforation location and reservoir thickness. However, the CO2 front in the late flood stage shows a linear relationship with the square of time. It is recommended that injection well and production wells are completely perforated because the enhanced gas recovery is higher than other perforation options and excessive bottom-hole pressure in the injection well can be avoided. The new findings of this work can provide some insights into the production mechanism of CO2 storage and enhanced recovery in tight gas reservoirs, which is beneficial for reducing investment risks and improving production efficiency for future large-scale field applications.
Spontaneous imbibition is an important phenomenon of fluid transports in porous media, particularly in liquid environment with a certain range of interfacial tension and wettability. Meanwhile, the spontaneous imbibition could be enhanced with the additions of surfactants, through modifying the oil–water interfacial tension (IFT) and wettability. However, ultra-low IFT impairs the capillary pressure. Hence, appropriate ranges of the IFT and contact angle (CA), though lacking adequate investigations, are key to optimizing spontaneous imbibition. Here, a series of physical experiments were conducted to evaluate the spontaneous imbibition efficiency of surfactant solutions with wide-range IFTs (10−3–101 mN/m) in the porous media of permeability 11 mD, through designed interfacial property measurements with different surfactant concentrations. Besides, the inverse Bond number was employed to determine the optimized interfacial properties during the imbibition. Overall, the best imbibition-induced hydrocarbon recovery is reached at oil viscosity of 25.26 mPa·s, an IFT of 0.1–0.2 mN/m and a CA of 70–80°.
The infamous numerical sign problem poses a fundamental obstacle to particle- based stochastic Wigner simulations in high-dimensional phase space. Although the existing particle annihilation (PA) via uniform mesh significantly alleviates the sign problem when dimensionality D <= 4, the mesh size grows dramatically when D >= 6 due to the curse of dimensionality and consequently makes the annihilation very inefficient. In this paper, we propose an adaptive PA algorithm, termed sequential-clustering particle annihilation via discrepancy estimation (SPADE), to overcome the sign problem. SPADE follows a divide-and-conquer strategy: adaptive clustering of particles via controlling their number-theoretic discrepancies and independent random matching in each cluster. The target is to alleviate the oversampling problem induced by the overpartitioning of phase space and to capture the nonclassicality of the Wigner function simultaneously. Combining SPADE with the variance reduction technique based on the stationary phase approximation, we attempt to simulate the proton-electron couplings in six- and 12-dimensional phase space. A thorough performance benchmark of SPADE is provided with the reference solutions in six-dimensional phase space produced by a characteristic-spectral-mixed scheme under a 733*803 uniform grid, which fully explores the limit of grid-based deterministic Wigner solvers.
Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) pose a significant threat to both ecosystems and human health. Owing to the excellent catalytic activity, eco-safety, and convenience for defect engineering, BiOBr with oxygen vacancies (OVs) of different density thus were fabricated and employed to activate H2O2 for ARB disinfection/ARGs degradation in present study. We found that BiOBr with OVs of appropriate density induced via ethanol reduction (BOB-E) could effectively activate H2O2, achieving excellent ARB disinfection and ARGs degradation efficiency. Moreover, this disinfection system exhibited remarkable tolerance to complex water environments and actual water conditions. In-situ characterization and theoretical calculations revealed that OVs in BOB-E could effectively capture and activate aqueous H2O2 into HO· and O2·−. The generated reactive oxygen species combined with electron transfer could damage the cell membrane system and degrade genetic materials of ARB, leading to effective disinfection. The impressive reusability, high performance achieved in two immobilized reaction systems (packed column and baffled ditch reactor), excellent degradation of emerging organic pollutants supported the feasibility of BOB-E/H2O2 system towards practical water decontamination. Overall, this study not only provides insights into fabrication of bismuth-based catalysts for efficient ARB disinfection/ARGs degradation via OVs regulation, but also paves the way for their practical applications.
In the era of a green economy, green innovation has become a way for enterprises to gain competitive advantage, and it is of great theoretical and practical significance to explore the driving force of enterprises' green innovation. This study explores the peer effect of an enterprise's green innovation and conducts an empirical test using data from 3338 Chinese listed companies in 2020. The results show a significant positive peer effect of enterprises' green innovation, and the green innovation of individual enterprises increases by 0.869 for each unit increase in industry-average green innovation. Further research shows that market power is the channel by which peer influence affects an enterprise's green innovation. Moreover, regional heterogeneity exists in the strength of the peer effect, which varies according to firm maturity and board size. These findings provide a reference for enterprises and governments to promote green transformation.