科研成果 by Year: 2008

2008
Zheng M*, DR K, Wang F, Shi XM, Guo ZG. Size distribution of organic and inorganic species in Hong Kong aerosols during the wet and dry seasons. J. Geophys. Res. [Internet]. 2008;113, D16303. LINKAbstract
Organic compounds including alkanes, fatty acids, and polycyclic aromatic hydrocarbons (PAHs) and trace and major elements in four size fractions (< 0.49 mu m, 0.49-0.95 mu m, 0.95-2.5 mu m, and 2.5-10 mu m) collected from June 1998 to January 1999 in Hong Kong were physically and chemically characterized by scanning electron microscope (SEM), gas chromatography/mass spectrometry (GC-MS), and inductively coupled plasma/mass spectrometry (ICP-MS) to study their size distributions, seasonal variations, and sources. SEM micrographs show that abundances and shapes of particles in each size fraction exhibit distinct difference between wet and dry seasons. Solvent extractable organic compounds (SEOC) investigated in this study were significantly enriched in fine particulate matter (PM2.5) since 97\% of PAH, 88\% of alkane, and 69\% of fatty acids in PM10 were actually from PM2.5. The pollution elements and SEOC showed a change from a maxima in the finest fraction (< 0.49 mm) in the wet season, to an obvious increase in the 0.49-2.5 mu m fraction in September and October, and to a maxima in the finest fraction again in November and December. This corresponds to a change from a strong local emission from pollution sources, to possibly aged materials in the transition period of Asian monsoon, and to the pollution emissions dominated by those transported from the continent. The distinct difference of particle size distributions between wet and dry seasons suggests that the health effects of particles in Hong Kong may be different in those seasons.
Yan B, Zheng M*, Hu YT, Lee S*, HK K, AG R. Organic composition of carbonaceous aerosols in an aged prescribed fire plume. Atmos. Chem. Phys. [Internet]. 2008;8:6381-6394. LINKAbstract
For the time being, Integrated Optics is able to produce a range of devices able of efficiently modulating phase, amplitude and frequency of guided waves in single mode structures implemented at the surface of active materials such as Lithium Niobate. In most of the cases, their basic principle relies on the interference pattern of two guided waves and the classical implementations of such modulators were mainly related to COBRA switch type directional couplers or to MACH ZEHNDER type interferometers. Only very recently a structure combining the coupled waveguides of a COBRA and the Y junction of the MACH ZEHNDER interferometer was designed. This paper is an analysis of the switching characteristics of this Y-fed directional coupler and of its high frequency modulation properties.
Ding X, Zheng M*, Yu L, Zhang X, Weber RJ, Yan B, Russell AG, Edgerton ES, Wang X. Spatial and seasonal trends in biogenic secondary organic aerosol tracers and water-soluble organic carbon in the southeastern United States. Environmental science & technology [Internet]. 2008;42:5171—5176. LINK SCI被引用次数:113.
Lee S*, Kim HK, Yan B, Cobb CE, Hennigan C, Nichols S, Chamber M, Edgerton ES, Jansen JJ, Hu Y, et al. Diagnosis of aged prescribed burning plumes impacting an urban area. Environmental science & technology [Internet]. 2008;42:1438—1444. LINK SCI被引用次数:48.
Lin K, Liu W, Wang Y, Russell AG, Edgerton ES, Zheng M*. Comparison of PM2.5 source apportionment using positive matrix factorization and molecular marker-based chemical mass balance. Science of The Total Environment [Internet]. 2008;394:290 - 302. LINKAbstract
A comprehensive comparison of positive matrix factorization (PMF) and molecular marker-based chemical mass balance (CMB-MM) modeling on PM2.5 source contributions was conducted for particulate matter measurements taken at Jefferson Street, Atlanta, Georgia (JST). The datasets used in each type of receptor modeling were different: CMB-MM used data of primarily organic tracers plus a couple elements measured from 51 24-h PM2.5 samples collected in July 2001 and January 2002. While for PMF, with elements, ions, five gaseous components, and eight temperature-resolved carbon fractions as the input data, both source profiles and contributions were resolved from a total of 932 daily PM2.5 samples covering a 3-year period between January 2000 and December 2002. The model results for the overlapping periods (July 2001 and January 2002) were extracted for comparison. Seven primary sources and three secondary sources were resolved by CMB-MM, while a total of nine primary and secondary factors were resolved by PMF. On average, 107% and 85% of PM2.5 mass were explained by CMB-MM and PMF, respectively, with secondary aerosols handled differently in the above two methods. Four similar sources were resolved by both methods, with good correlation for road dust, but fair for gasoline exhaust and wood combustion. The CMB-MM diesel exhaust has very poor correlation with the PMF resolved diesel exhaust. However, the CMB-MM combined mobile source has improved correlation with the PMF result as compared with the diesel exhaust source. If only the winter data were included, the CMB-MM combined mobile source shows enhanced correlation with the PMF combined source, as compared with the single source of diesel exhaust or gasoline exhaust.
Ding X, Zheng M*. Contemporary or fossil origin: split of estimated secondary organic carbon in the southeastern United States. Environmental science & technology. 2008;24(42).Abstract
One year of high-volume PM2.5 filter samples were collected from 2004 to 2005 at one rural site and three urban sites in the Southeastern Aerosol Research and Characterization (SEARCH) network. These filters were analyzed for both organic tracers and carbon isotopes. Sources for primary carbon were previously apportioned based on molecular marker-based chemical mass balance modeling (CMB-MM). In this study, these primary sources were further classified into two categories as having fossil and contemporary origins. 14C data were used to estimate the relative contributions of fossil and contemporary contents in total carbon (TC). Combined these two sets of independent results, fossil and contemporary contributions to secondary carbon source, which was estimated by the unexplained OC in CMB-MM, were calculated. The fossil secondary organic carbon (SOCF) and the contemporary secondary organic carbon (SOCC) ranged from 0.56 to 3.20 microgC/m3 and 0.82 to 4.09 microgC/m3, respectively. SOCF was higher at urban sites and exhibited small seasonal variation at all sites, probably resulting from higher fossil precursor emissions in urban areas. In contrast, SOCC was higher at the rural site and exhibited obvious seasonal variation at all sites. During the whole year SOCF was the major secondary organic carbon (SOC) contributor at the urban sites, while SOCC dominated SOC at the rural site. In summer isoprene-derived SOC showed a large contribution to SOCC and exhibited significant positive correlation with SOCC, indicating the importance of isoprene-derived secondary organic aerosol (SOA) formation during summer. It is interesting to note that the secondary items, including SOCF, SOCC, secondary sulfate, and secondary ammonium, exhibited significant correlations between the monitoring sites, suggesting the regional impact of secondary aerosol in the southeastern United States.