[1] Fine particle organic carbon in Delhi, Mumbai, Kolkata, and Chandigarh is speciated to quantify sources contributing to fine particle pollution. Gas chromatography/mass spectrometry of 29 particle-phase organic compounds, including n-alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, and levoglucosan along with quantification of silicon, aluminum, and elemental carbon are used in a molecular-marker based source apportionment model to quantify the primary source contributions to the PM2.5 mass concentrations for four seasons in three sites and for the summer in Chandigarh. Five primary sources are identified and quantified: diesel engine exhaust, gasoline engine exhaust, road dust, coal combustion, and biomass combustion. Important trends in the seasonal and spatial patterns of the impact of these five sources are observed. On average, primary emissions from fossil fuel combustion (coal, diesel, and gasoline) are responsible for about 25–33% of PM2.5 mass in Delhi, 21–36% in Mumbai, 37–57% in Kolkata, and 28% in Chandigarh. These figures can be compared to the biomass combustion contributions to ambient PM2.5 of 7–20% for Delhi, 7–20% for Mumbai, 13–18% for Kolkata, and 8% for Chandigarh. These measurements provide important information about the seasonal and spatial distribution of fine particle phase organic compounds in Indian cities as well as quantifying source contributions leading to the fine particle air pollution in those cities.
The formation of secondary organic aerosol (SOA) in an anthropogenic-influenced region in the southeastern United States is investigated by a comparison with urban plumes in the northeast. The analysis is based on measurements of fine-particle organic compounds soluble in water (WSOC) as a measure of secondary organic aerosol. Aircraft measurements over a large area of northern Georgia, including the Atlanta metropolitan region, and in plumes from New York City and surrounding urban regions in the northeast show that fine-particle WSOC are spatially correlated with vehicle emission tracers (e.g., CO), yet the measurements indicate that vehicles do not directly emit significant particulate WSOC. In addition to being correlated, WSOC concentrations were in similar proportions to anthropogenic tracers in both regions, despite biogenic volatile organic compounds (VOCs) that were on average 10-100 times higher over northern Georgia. In contrast, radiocarbon analysis on WSOC extracted from integrated filters deployed in Atlanta suggests that roughly 70-80% of the carbon in summertime WSOC is modern. If both findings are valid, the combined results indicate that in northern Georgia, fine-particle WSOC was secondary and formed through a process that involves mainly modern biogenic VOCs but which is strongly linked to an anthropogenic component that may largely control the mass of SOA formed. Independent of the radiocarbon results, a strong association between SOA and anthropogenic sources has implications for control strategies in urban regions with large biogenic VOC emissions.
A substantial fraction of fine particulate matter (PM) across the United States is composed of carbon, which may be either emitted in particulate form (i.e., primary) or formed in the atmosphere through gas-to-particle conversion processes (i.e., secondary). Primary carbonaceous aerosol is emitted from numerous sources including motor vehicle exhaust, residential wood combustion, coal combustion, forest fires, agricultural burning, solid waste incineration, food cooking operations, and road dust. Quantifying the primary contributions from each major emission source category is a prerequisite to formulating an effective control strategy for the reduction of carbonaceous aerosol concentrations. A quantitative assessment of secondary carbonaceous aerosol concentrations also is required, but falls outside the scope of the present work.
Polycyclic aromatic hydrocarbons (PAHs) in two 210Pb dated sediment cores from the coastal East China Sea, strongly influenced by the discharge from the Yangtze River, were determined to help to reconstruct the economic development over the past century in East China. The variations in PAH concentrations and fluxes in the sediment cores were primarily due to energy structure change, severe floods and dam construction activities. The impact on PAHs by the river discharge overwhelmed the atmospheric depositions. The profiles of PAH fluxes and concentrations as well as compositions in the cores revealed the transformation from an agricultural economy to an industrial one especially after the 1990s' in the region. PAHs in the study area were dominated by pyrolytic sources.
During the 2003 Chinese Arctic Research Expedition from the Bohai Sea to the high Arctic (37–80°N) aboard the icebreaker Xuelong (Snow Dragon), air samples were collected using a modified high-volume sampler that pulls air through a quartz filter and a polyurethane foam plug (PUF). These filters and PUFs were analyzed for particulate phase and gas phase polycyclic aromatic hydrocarbons (PAHs), respectively, in the North Pacific Ocean and adjacent Arctic region. The ∑PAHs (where ∑=15 compounds) ranged from undetectable level to 4380pgm−3 in the particulate phase and 928–92600pgm−3 in the gas phase, respectively. A decreasing latitudinal trend was observed for gas-phase PAHs, probably resulting from temperature effects, dilution and decomposition processes; particulate-phase PAHs, however, showed poor latitudinal trends, because the effects of temperature, dilution and photochemistry played different roles in different regions from middle-latitude source areas to the high latitudes. The ratios of PAH isomer pairs, either conservative or sensitive to degradation during long-range transport, were employed to interpret sources and chemical aging of PAHs in ocean air. In this present study the fluoranthene/pyrene and indeno[123-cd]pyrene/benzo[ghi]pyrene isomer pairs, whose ratios are conservative to photo-degradation, implies that biomass or coal burning might be the major sources of PAHs observed over the North Pacific Ocean and the Arctic region in the summer. The isomer ratios of 1,7/(1,7+2,6)-DMP (dimethylphenanthrene) and anthracene/phenanthrene, which are sensitive to aging of air masses, not only imply chemical evolving of PAHs over the North Pacific Ocean were different from those over the Arctic, but reveal that PAHs over the Arctic were mainly related to coal burning, and biomass burning might have a larger contribution to the PAHs over the North pacific ocean.
Hong Kong's persistent unhealthy level of fine particulate matter is a current public health challenge, complicated by the city being located in the rapidly industrializing Pearl River Delta Region of China. While the sources of the region's fine particulate matter (PM2.5) are still not well understood, this study provides new source information through ground measurements and statistical analysis of 24 elements associated with particulate matter collected on filters. Field measurements took place over 4 months (October 2002, December 2002, March 2003, and June 2003) at seven sites throughout the Pearl River Delta, with three sites located in Hong Kong and four sites in the neighboring province, Guangdong. The 4-month average element concentrations show significant variation throughout the region, with higher levels of nearly every species seen among the northern Guangdong sites in comparison to Hong Kong. The high correlation (Pearson r>0.8) and similar magnitudes of 11 species (Al, Si, S, K, Ca, Mn, Fe, Zn, Br, Rb, and Pb) at three contrasting sites in Hong Kong indicate that sources external to Hong Kong dominate the regional levels of these elements. Further correlative analysis compared Hong Kong against potential source areas in Guangdong Province (Shenzhen, Zhongshan, and Guangzhou). Moderate correlation of sulfur for all pairings of Hong Kong sites with three Guangdong sites in developed areas (average Pearson r of 0.52–0.94) supports the importance of long-distance transport impacting the region as a whole, although local sources also clearly impact observed concentrations. Varying correlative characteristics for zinc when Hong Kong sites are paired with Shenzhen (average r=0.86), Guangzhou (average r=−0.65) and Zhongshan (average r=0.45) points to a source area located south of Guangzhou and locally impacting Zhongshan. The concentration distribution and correlative characteristics of bromide point to sources located within the Pearl River Delta, but the specific location is yet inconclusive. Uniquely poor correlation of eight species (Al, Si, K, Ca, Mn, Fe, Rb, and Pb) for the pairing of Hong Kong sites with Guangzhou, in addition to the relatively higher concentrations measured at Guangzhou, indicates a significant regional impact due to land development and industrial activities in the Guangzhou vicinity.
To assess the contribution of sources to fine particulate organic carbon (OC) at four sites in North Carolina, USA, a molecular marker chemical mass balance model (MM-CMB) was used to quantify seasonal contributions for 2 years. The biomass burning contribution at these sites was found to be 30–50% of the annual OC concentration. In order to provide a better understanding of the uncertainty in MM-CMB model results, a biomass burning profile sensitivity test was performed on the 18 seasonal composites. The results using reconstructed emission profiles based on published profiles compared well, while model results using a single source test profile resulted in biomass burning contributions that were more variable. The biomass burning contribution calculated using an average regional profile of fireplace emissions from five southeastern tree species also compared well with an average profile of open burning of pine-dominated forest from Georgia. The standard deviation of the results using different source profiles was a little over 30% of the annual average biomass contributions. Because the biomass burning contribution accounted for 30–50% of the OC at these sites, the choice of profile also impacted the motor vehicle source attribution due to the common emission of elemental carbon and polycyclic aromatic hydrocarbons. The total mobile organic carbon contribution was less effected by the biomass burning profile than the relative contributions from gasoline and diesel engines.
The organic and inorganic species in total suspended particulates (TSP) collected from June to December in 1998 in Hong Kong were identified by gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS) to investigate the sources of Hong Kong aerosols and the mechanisms that control the chemical compositions and variations in the atmosphere. These samples were classified according to the climate: wet, dry under the influence of southerly winds from the sea (Dry-S) and dry under the influence of northerly winds from the continent (Dry-N). There were significant increases of materials from crustal, biogenic and pollution sources in the Dry-N period by a factor of 5, 4, and 2, respectively. Since the crustal tracers (e.g., Al, Fe) could be from coal flyash, the estimate of crustal material in the Dry-N period may include some materials from pollution source. Therefore, a positive correlation between crustal and pollution elements was observed. From the analysis of solvent-extractable organics (SEOC), microbial and meat cooking sources showed slight increase (1.2-fold). Higher levels of plant wax materials in the Dry-N period were probably due to the higher wind speed during the winter monsoon. The percentage of crustal material in TSP was 47% in the Dry-N period, and only 22% in the wet season and the Dry-S period. Plant wax materials (biogenic source) had a higher percentage in the Dry-N period (39% of SEOC) while microbial and meat cooking sources accounted for 49% of SEOC in the wet season. This study revealed that wind direction and precipitation had a significant influence not only on the concentrations but also on the chemical compositions and sources of Hong Kong aerosols.
Sources of carbonaceous aerosols collected from three sites of Chattanooga, TN (CH), Muscle Shoals, AL (MS), and Look Rock, TN (LR) in the Tennessee Valley Region (TVR) were apportioned using both organic tracer-based chemical mass balance (CMB) modeling and radiocarbon (14C) measurement and the results were compared. Eight sources were resolved by CMB, among which wood combustion (averaging 0.92μgm−3) was the largest contributor to primary organic carbon (OC) concentrations, followed by gasoline exhaust (0.35μgm−3), and diesel exhaust (0.18μgm−3). The identified primary sources accounted for 43%, 71%, and 14% of measured OC at CH, MS, and LR, respectively. Contributions from the eight primary sources resolved by CMB could explain 107±10% of ambient elemental carbon (EC) concentrations, with diesel exhaust (66±32%) and wood combustion (37±33%) as the most important contributors. The fossil fractions in total carbon determined by 14C measurements were in reasonably good agreement with that in primary (OC+EC) carbon apportioned by CMB in the MS winter samples. The comparison between the 14C and CMB results revealed that contemporary sources dominated other OC in the TVR, especially in summertime (84% contemporary).
The primary emission source contributions to fine organic carbon (OC) and fine particulate matter (PM2.5) mass concentrations on a daily basis in Atlanta, GA, are quantified for a summer (July 3 to August 4, 2001) and a winter (January 2-31, 2002) month. Thirty-one organic compounds in PM2.5 were identified and quantified by gas chromatography/mass spectrometry. These organic tracers, along with elemental carbon, aluminum, and silicon, were used in a chemical mass balance (CMB) receptor model. CMB source apportionment results revealed that major contributors to identified fine OC concentrations include meat cooking (7-68%; average: 36%), gasoline exhaust (7-45%; average: 21%), and diesel exhaust (6-41%; average: 20%) for the summer month, and wood combustion (0-77%; average: 50%); gasoline exhaust (14-69%; average: 33%), meat cooking (1-14%; average: 5%), and diesel exhaust (0-13%; average: 4%) for the winter month. Primary sources, as well as secondary ions, including sulfate, nitrate, and ammonium, accounted for 86 +/- 13% and 112 +/- 15% of the measured PM2.5 mass in summer and winter, respectively.