A micromechanics model to predict effective thermal conductivity of rGO/MMT/polymer composites

Citation:

Cong C, Chen Y, Huang Z, Bai S. A micromechanics model to predict effective thermal conductivity of rGO/MMT/polymer composites. Journal of Applied PhysicsJournal of Applied PhysicsJournal of Applied Physics. 2021;129:155108.

摘要:

In recent years, enhanced thermal conductive properties of polymer composites filled with reduced graphene oxide (rGO) have been studied for diverse applications. However, rGO fillers tend to form aggregates, making it difficult to reach the maximum enhancement through the use of rGO. Experiments have shown that the hydrogen bond between rGO and montmorillonite (MMT) can lead to a stable dispersion of rGO with the result of improving the effective thermal conductivity (ETC) of the composite. However, the mechanisms of this phenomenon are not yet well known. In this work, a micromechanics-based method is proposed to provide an analytical expression of the ETC of rGO/MMT/polymer composites. The predictions are in good agreement with the experimental data, demonstrating the effectiveness of the proposed framework. Also, the effect of the orientation of the fillers is investigated, which useful to determine the optimal orientation and filling ratio to meet various requirements in the material performance design and preparation of rGO/MMT/polymer composites.

附注:

Rq1ukTimes Cited:1Cited References Count:45