Huang ZP, Chen YQ, Sun LZ.
Thermal-Elastoplastic Constitutive Model of Particle-Filled Composites, in
Advances in Heterogeneous Material Mechanics 2011Advances in Heterogeneous Material Mechanics 2011.; 2011:720-720.
AbstractA thermal-elastoplastic constitutive model is proposed for particle-filled composites in this paper. Particles are assumed to be linear thermoelastic while the matrix follows the thermal-elastoplastic responses with the generalized Ramberg-Osgood relation. Based on the micromechanics methodology and homogenization procedures, the effective thermal-mechanical constitutive functions are derived including the macroscopic Helmholtz free energy and the macroscopic yield function.First, it is assumed that in the case of plastic unloading or stress-strain state being in the macroscopic yield surface, the constitutive relation of the composites is linear thermoelastic expressed by the macroscopic Helmholtz free energy. The micromechanics-based thermoelastic properties of the composite are obtained including the effective elastic moduli, thermal expansion coefficients, and specific heats.Furthermore, with the concept of linear comparison composites, the variational principle is extended to consider the thermal effect, from which the lower bound of the macroscopic stress potential for the nonlinear composites can be computed. The associated macroscopic plastic strain is defined, and the macroscopic yield function in the temperature-strain space is therefore determined.Finally, the above two constitutive functions are combined with the thermal-elastoplastic constitutive theory proposed by Huang (1994) to develop the loading-unloading criterion in the temperature-strain space and the incremental thermal-elastoplastic constitutive relations for particulate composites. The results can be useful in the study of the thermomechanical behavior of particle-filled composites at elevated temperatures.