科研成果 by Year: 2020

2020
Fan, Y. ; Han, Y. ; Liu, Y. J. ; Wang, Y. ; Chen, X. ; Chen, W. ; Liang, P. ; Fang, Y. ; Wang, J. ; Xue, T. ; et al. Biases Arising from the Use of Ambient Measurements to Represent Personal Exposure in Evaluating Inflammatory Responses to Fine Particulate Matter: Evidence from a Panel Study in Beijing, China. Environmental Science & Technology Letters 2020. 访问链接Abstract
Ambient particulate matter (PM) is often used as a proxy of personal exposure in epidemiological studies of PM-induced health effects, yet whether this proxy biases the estimates of health effects is still unknown. On the basis of a panel study in Beijing, China, we investigated the dependence of 24 h personal exposure concentration to fine particles (PM2.5) and its carbonaceous components on the corresponding 24 h ambient concentration. The associated changes in inflammatory biomarkers with personal and ambient exposure were further examined using linear mixed-effect models. At ambient PM2.5 levels of \textless25 $μ$g m–3, personal exposure to PM2.5 was often several times higher, with a median personal/ambient ratio of ∼3. The ratio declined with an increase in ambient concentration, approaching ∼1 at ambient PM2.5 levels of \textgreater75 $μ$g m–3. Similar trends were also observed for organic carbon and elemental carbon. Personal exposures were significantly associated with both respiratory and systemic inflammatory biomarkers, such as fractional exhaled nitric oxide and white blood cell count. When ambient data were used, the association with systemic inflammation weakened. Our findings imply that the use of the ambient pollutant concentration as a proxy for personal exposure may be inaccurate and could bias the estimates of PM-induced health effects.
Lunderberg, D. M. ; Kristensen, K. ; Tian, Y. ; Arata, C. ; Misztal, P. K. ; Liu, Y. J. ; Kreisberg, N. ; Katz, E. F. ; DeCarlo, P. F. ; Patel, S. ; et al. Surface Emissions Modulate Indoor Svoc Concentrations Through Volatility-Dependent Partitioning. Environmental Science & Technology 2020, 54, 6751–6760. 访问链接Abstract
Measurements by semivolatile thermal desorption aerosol gas chromatography (SV-TAG) were used to investigate how semivolatile organic compounds (SVOCs) partition among indoor reservoirs in (1) a manufactured test house under controlled conditions (HOMEChem campaign) and (2) a single-family residence when vacant (H2 campaign). Data for phthalate diesters and siloxanes suggest that volatility-dependent partitioning processes modulate airborne SVOC concentrations through interactions with surface-laden condensed-phase reservoirs. Airborne concentrations of SVOCs with vapor pressures in the range of C13 to C23 alkanes were observed to be correlated with indoor air temperature. Observed temperature dependencies were quantitatively similar to theoretical predictions that assumed a surface-air boundary layer with equilibrium partitioning maintained at the air-surface interface. Airborne concentrations of SVOCs with vapor pressures corresponding to C25 to C31 alkanes correlated with airborne particle mass concentration. For SVOCs with higher vapor pressures, which are expected to be predominantly gaseous, correlations with particle mass concentration were weak or nonexistent. During primary particle emission events, enhanced gas-phase emissions from condensed-phase reservoirs partitioned to airborne particles, contributing substantially to organic particulate matter. An emission event related to oven-usage was inferred to deposit siloxanes in condensed-phase reservoirs throughout the house, leading to the possibility of reemission during subsequent periods with high particle loading.
Yee, L. D. ; Isaacman-Vanwertz, G. ; Wernis, R. A. ; Kreisberg, N. M. ; Glasius, M. ; Riva, M. ; Surratt, J. D. ; De Sá, S. S. ; Martin, S. T. ; Alexander, L. M. ; et al. Natural and Anthropogenically Influenced Isoprene Oxidation in Southeastern United States and Central Amazon. Environmental Science & Technology 2020, 54, 5980–5991. 访问链接Abstract
Anthropogenic emissions alter secondary organic aerosol (SOA) formation chemistry from naturally emitted isoprene. We use correlations of tracers and tracer ratios to provide new perspectives on sulfate, NOx, and particle acidity influencing isoprene-derived SOA in two isoprene-rich forested environments representing clean to polluted conditions—wet and dry seasons in central Amazonia and Southeastern U.S. summer. We used a semivolatile thermal desorption aerosol gas chromatograph (SV-TAG) and filter samplers to measure SOA tracers indicative of isoprene/HO2 (2-methyltetrols, C5-alkene triols, 2-methyltetrol organosulfates) and isoprene/NOx (2-methylglyceric acid, 2-methylglyceric acid organosulfate) pathways. Summed concentrations of these tracers correlated with particulate sulfate spanning three orders of magnitude, suggesting that 1 $μ$g m–3 reduction in sulfate corresponds with at least ∼0.5 $μ$g m–3 reduction in isoprene-derived SOA. We also find that isoprene/NOx pathway SOA mass primarily comprises organosulfates, ∼97% in the Amazon and ∼55% in Southeastern United States. We infer under natural conditions in high isoprene emission regions that preindustrial aerosol sulfate was almost exclusively isoprene-derived organosulfates, which are traditionally thought of as representative of an anthropogenic influence. We further report the first field observations showing that particle acidity correlates positively with 2-methylglyceric acid partitioning to the gas phase and negatively with the ratio of 2-methyltetrols to C5-alkene triols.