科研成果 by Year: 2017

2017
Wang D, Hou Z, Zhang Q, Zhou Y, Lu X-X. Impact of the Biodegradation of 6:2 Fluorotelomer Alcohol on the Bacterial Community Structure of Surface Sediment. Huanjing Kexue/Environmental Science [Internet]. 2017;38:4747-4755. 访问链接Abstract
Fluorotelomer alcohol (6:2 FTOH) is a polyfluoalkyl substance that has been widely used in industry and consumer products in recent years, causing potential harm to the environment. However, currently the impact of 6:2 FTOH and its degradation products on microbial communities in sediment is unclear. The purpose of this study is to explore the impact of the biodegradation of 6:2 FTOH on bacterial community structures in surface sediment based on gene analysis. Surface sediment and river water were collected from Hai river, Tianjin, and a microcosm experiment was performed in the laboratory. The concentration of 6:2 FTOH and its degradation products were analyzed by liquid chromatograph-mass spectrometry/mass spectrometry (LC-MS/MS). The bacterial community structure was analyzed by denaturing gradient gel electrophoresis and high-throughput sequencing. The results showed that 6:2 FTOH could be degraded by microorganisms (half-life was less than 3 d), producing transient products such as 6:2 fluorotelomer carboxylic acid (FTCA) and 6:2 fluorotelomer unsaturated carboxylic acid (FTUCA) and stable products such as 5:2 fluorotelomer (FT) ketone, 5:2 fluorotelomer alcohol (sFTOH), perfluorohexanoic acid(PFHxA), perfluoro-n-pentanoic acid (PFPeA), perfluorobutanoic acid (PFBA) and 5:3 polyfluorinated acid. At different stages of 6:2 FTOH degradation, a change of bacteria and the predominant population became somewhat different. Based on the experimental results for 100 d, at the Phylum level, the biodegradation of 6:2 FTOH greatly increases the abundance of Chloroflexi (+24.8%) and decreases the abundance of Proteobacteria (-17.8%) and Firmicutes (-15.9%). At the Class level, due to the biodegradation of 6:2 FTOH, bacteria with notable increases included Anaerolineae (+19.6%) and δ-Proteobacteria (+4.3%), while bacteria with notable decreases included ε-Proteobacteria (-20.0%), Clostridia (-10.1%), Bacilli (-5.8%) and γ-Proteobacteria (-4.2%). At the Genus level, due to the biodegradation of 6:2 FTOH, bacteria with notable increases included Anaerolineaceae_(uncultured) (+19.1%) and Thioalkalispira (+13.3%), while bacteria with notable decreases included Vibrio (-14.1%), Sulfurimonas (-13.2%), Bacillus (-5.1%), Sulfurovum (-4.2%) and Fusibacter (-4.1%). These results are helpful for predicting the response of bacteria to the contamination of polyfluoalkyl substances and isolating the bacteria capable of the biodegradation of polyfluoalkyl substances. © 2017, Science Press. All right reserved.