科研成果

2021
Zhang Y, Chen Z, Zong Y, Zhong Z, Chen L, Wu Y, Chen J, Liu Y*. Characteristics of Electrocochleography in Patients with Presbycusis and DifferentLevels of Speech Recognition Ability. Journal of Otology (中华耳科学杂志). 2021;19(3):447-451.
Su Z, Wen D. Characterization of antibiotic resistance across Earth's microbial genomes. Science of the Total Environment [Internet]. 2021;816:151613. 访问链接Abstract
Widespread antibiotic resistance across Earth's habitats has become a critical health concern. However, large-scale investigation on the distribution of antibiotic resistance genes (ARGs) in the microbiomes from most types of ecosystem is still lacking. In this study, we provide a comprehensive characterization of ARGs for 52,515 microbial genomes covering various Earth's ecosystems, and conduct the risk assessment for ARG-carrying species based on further identification of mobile genetic elements (MGEs) and virulence factor genes (VFGs). We identify a total of 6159 ARG-carrying metagenome-assembled genomes (ACMs), and most of them are recovered from human gut and city subway. Our results show that efflux pump is the most common mechanism for bacteria to acquire multidrug resistance genes in Earth's microbiomes. Enterobacteriaceae species are the largest hosts of ARGs, accounting for 14% of total ACMs with 64% of the total ARG hits. Most of ARG-carrying species are unique in the different ecosystem categories, while 33 potential background ARGs are commonly shared by all ecosystem categories. We then detect 36 high-risk ARGs that likely threat public health in all ACMs. Based on ranking the importance of ARG-carrying species in the different ecosystem categories, several bacterial taxa such as Escherichia coliEnterococcus faecalis, and Pseudomonas_A stutzeri are recognized as priority species for surveillance and control. Overall, our study gives a broad view of ARG-host associations in the environments.
Wu H, Fu P, Morris JP, Mattson ED, Neupane G, Smith MM, J.Hawkins A, Zhang Y, Kneafsey T. Characterization of flow and transport in a fracture network at the EGS Collab field experiment through stochastic modeling of tracer recovery. Journal of Hydrology [Internet]. 2021;593:125888. 访问链接
Wang H, Tian L, Kang K, Zhang B, Li G, Zhang K. Characterization of Ultrasonic-Induced Wettability Alteration under Subsurface Conditions. Langmuir [Internet]. 2021;38(1):514-522. 访问链接Abstract
Understanding and manipulating wettability alterations has tremendous implications in theoretical research and industrial applications. This study proposes a novel idea of applying ultrasonic for wettability alterations and also provides its quantitative characterizations and in-depth analyses. More specifically, with pretreatment of ultrasonic, mechanisms of wettability alteration were characterized from the contact angle measurements, as well as the in-depth analyses from atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). After ultrasonic treatments, the wettability of mineral with low permeability is determined to altered from strong hydrophilic to intermediate wettability. The mechanism interpretations are conducted by means of the AFM, XRD, and FTIR. Basically, as the time of ultrasonic treatment increases, the AFM results indicate that the roughness of rock surface and oil/rock interface (contact area) with surroundings of brine is enhanced. Meanwhile, the XRD results show the diffusions of clays from the rock surface to the aqueous phase, and FTIR indicates that the number of functional groups of Si–O–Si, C–O–C, C–O, C═O, and OH decreases while the number of COOH and C═C═O groups increases. This study clearly reveals the surface chemistry of oil-rock wettability alteration in the subsurface conditions, which would provide technical support for subsurface usage of geo-energy productions and carbon sequestrations.
Wang H, Lu K, Chen S, Li X, Zeng L, Hu M, Zhang Y. Characterizing nitrate radical budget trends in Beijing during 2013–2019. Science of The Total Environment. 2021;795:148869.
Xu N, Wang TT, Li X, Tang RZ, Guo S, Hu M. Chemical Characteristics and Source Apportionment of Organic Aerosols in Atmospheric PM2.5 in Winter in Beijing. Huanjing Kexue/Environmental ScienceHuanjing Kexue/Environmental ScienceHuanjing Kexue/Environmental Science. 2021;42:2101-2109.Abstract
To explore the concentrations, characteristics, and sources of organic aerosols in winter in Beijing, atmospheric fine particulate matter (PM2.5) samples were collected from November 10, 2016 to December 10, 2016. One hundred and twenty-nine particulate organic matters (POM) were quantified by gas chromatography-mass spectrometry, accounting for approximately 9.3%±1.2% of the total concentration of organic matter. The most abundant class was sugar, among which levoglucosan alone accounted for 18% of the quantified organic matter mass. The next most abundant classes were alkanoic acids, normal alkanes, dicarboxylic acids, and polycyclic aromatic hydrocarbons. The influence of winter heating and biomass burning emissions on organic aerosols in winter in Beijing was analyzed by the characteristics of the molecular markers in the POM. Compared with those during the non-heating period, the concentrations and proportions of hopane species, which are tracers for fossil fuels, increased in the organic matters during the heating period. Moreover, the influence of coal burning emissions on the distribution of hopane species was enhanced. The species with the maximum concentration and carbon predominance index in n-alkanes also reflected the influence of enhanced fossil fuel emissions. The results of the concentration-weighted trajectory model for levoglucosan, a tracer for biomass combustion, suggested that straw burning pollution in the surrounding areas of Beijing would affect the composition of organic aerosols in Beijing via airmass transport. A molecular marker-based chemical mass balance model was used to apportion the sources of organic carbon in the winter of 2016 in Beijing, and the results were compared with those of research in 2006 to quantify the changes in the source contributions over 10 years. The contribution of motor vehicles increased significantly in 2016 compared with that in 2006, whereas the contribution of coal burning and wood burning decreased to a large extent. The contribution of cooking emissions could not be ignored. Therefore, the control of motor vehicle and cooking emissions is of great importance to reduce the problem of PM2.5 pollution in winter in Beijing. © 2021, Science Press. All right reserved.
Chen X, Ren Z-Y, Li D-L, Liu T, Wang K, Shen Z-Q, Ellingsen SP, Sobolev AM, Mei Y, Li J-J, et al. Chemically Fresh Gas Inflows Detected in a Nearby High-mass Star-forming Region. \apjl. 2021;923:L20.
Li S, Cao S, Duan X, Zhang Y, Gong J, Xu X, Guo Q, Meng X, Bertrand M, Zhang JJ. Children's lung function in relation to changes in socioeconomic, nutritional, and household factors over 20 years in Lanzhou. Journal of Thoracic DiseaseJournal of Thoracic Disease. 2021;13:4574-4588.
Song X, Liu C, Zhang Y. Chinese College Students’ Source Selection and Use in Searching for Health and Wellness Information Online. Information Processing and Management [Internet]. 2021;58(3):102489. 访问链接
Zheng Y, Mou N, Zhang L, Makkonen T, Yang T. Chinese tourists in Nordic countries: An analysis of spatio-temporal behavior using geo-located travel blog data. Computers Environment and Urban Systems. 2021;85:101561.
Min C, Chen Q, Yan E, Bu Y, Sun J. Citation cascade and the evolution of topic relevance. Journal of the Association for Information Science and Technology. 2021;72(1):110-127.
Xue T, Zhu T, Peng W, Guan T, Zhang S, Zheng Y, Geng G, Zhang Q. Clean Air Actions in China, PM2.5 Exposure, and Household Medical Expenditures: a Quasi-Experimental Study [J]. PLOS Medicine. PLoS Medicine. 2021;18(1):1003480.
Janeway MG, Zhao X, Rosenthaler M, Zuo Y, Balasubramaniyan K, Poulson M, Neufeld M, Siracuse JJ, Takahashi CE, Allee L, et al. Clinical Diagnostic Phenotypes in Hospitalizations Due to Self-Inflicted Firearm Injury. Journal of Affective Disorders. 2021;278:172–180.Abstract
Hospitalized self-inflicted firearm injuries have not been extensively studied, particularly regarding clinical diagnoses at the index admission. The objective of this study was to discover the diagnostic phenotypes (DPs) or clusters of hospitalized self-inflicted firearm injuries. Using Nationwide Inpatient Sample data in the US from 1993 to 2014, we used International Classification of Diseases, Ninth Revision codes to identify self-inflicted firearm injuries among those ≥18 years of age. The 25 most frequent diagnostic codes were used to compute a dissimilarity matrix and the optimal number of clusters. We used hierarchical clustering to identify the main DPs. The overall cohort included 14072 hospitalizations, with self-inflicted firearm injuries occurring mainly in those between 16 to 45 years of age, black, with co-occurring tobacco and alcohol use, and mental illness. Out of the three identified DPs, DP1 was the largest (n=10,110), and included most common diagnoses similar to overall cohort, including major depressive disorders (27.7%), hypertension (16.8%), acute post hemorrhagic anemia (16.7%), tobacco (15.7%) and alcohol use (12.6%). DP2 (n=3,725) was not characterized by any of the top 25 ICD-9 diagnoses codes, and included children and peripartum women. DP3, the smallest phenotype (n=237), had high prevalence of depression similar to DP1, and defined by fewer fatal injuries of chest and abdomen. There were three distinct diagnostic phenotypes in hospitalizations due to self-inflicted firearm injuries. Further research is needed to determine how DPs can be used to tailor clinical care and prevention efforts.
Fu P, Schoenball M, Ajo-Franklin JB, Chai C, Maceira M, Morris JP, Wu H, Knox H, Schwering PC, White MD, et al. Close observation of hydraulic fracturing at EGS Collab Experiment 1: Fracture trajectory, microseismic interpretations, and the role of natural fractures. Journal of Geophysical Research: Solid Earth [Internet]. 2021;126:e2020JB020840. 访问链接
Zhang S, Wu Y, Liu X, Qian J, CHEN J, Han L, Dai* H. Co-benefits of deep carbon reduction on air quality and health improvement in Sichuan Province of China. Environmental Research Letters [Internet]. 2021. 访问链接
Wang J, Chen J, Yang X, Liu L, Wu C, Lu L, Li L, Wu Y*. Common brain substrates underlying auditory speech priming and perceived spatial separation. Frontiers in Neuroscience. 2021;15:158.
Fonseca EU, Yang W, Wang X, Rossi R, Logan BE. Comparison of different chemical treatments of brush and flat carbon electrodes to improve performance of microbial fuel cells. Bioresource technology. 2021;342:125932.
Fonseca EU, Yang W, Wang X, Rossi R, Logan BE. Comparison of different chemical treatments of brush and flat carbon electrodes to improve performance of microbial fuel cells. Bioresource technology. 2021;342:125932.
Zhou Y, Lu X, Yu B, Wang D, Zhao C, Yang Q, Zhang Q, Tan Y, Wang X, Guo J. Comparison of neonicotinoid residues in soils of different land use types. Science of the Total Environment [Internet]. 2021;782. 访问链接Abstract
Neonicotinoid insecticides (NEOs) have attracted particular attention in recent years due to their wide occurrence and potential impacts on the ecosystem and human health. This study aimed to compare the composition and level of NEOs in soils of different land use types. Two rounds of sampling were performed in Tianjin, China, with 158 soil samples in fall and 61 soil samples in spring collected from five types of land, i.e., greenhouse, orchard, farm, park and residential area. The concentrations of eight NEOs, i.e., imidacloprid (IMI), acetamiprid (ACE), thiamethoxam (THX), clothianidin (CLO), thiacloprid (THA), dinotefuran (DIN), nitenpyram (NIT) and flonicamid (FLO), were analyzed in the soil samples using LC-MS/MS. Six NEOs were detected, with IMI, ACE and THX being the most frequently detected ones. Concentrations of NEOs (arithmetic means in fall and spring, respectively) in greenhouse were the highest (2.52×102 and 4.59×102 ng g−1), followed by in orchard (35.1 and 1.31×102 ng g−1), park (50.4 and 1.02×102 ng g−1), residential area (20.2 and 1.38×102 ng g−1) and farm (25.5 and 84.2 ng g−1). The contribution of individual NEO varied in soils of different land use types. Both IMI and THX were largely used in greenhouse, while IMI was the main NEO in the other four lands. The NEO levels in soils planted with different crops varied greatly. Extremely high levels of NEOs (>103 ng g−1) were observed in soils planted with watermelon, tomato and peach in greenhouse. The ubiquitous presence of NEOs in soils deserves more attention, particularly in greenhouse. © 2021 Elsevier B.V.
Comparison study on atomic and molecular ellipticity dependence ofhigh-order harmonic generation. PHYSICAL REVIEW A [Internet]. 2021;103(4):043115. 访问链接Abstract
We systematically investigate ellipticity dependence of high-order harmonic generation of Ar and N2 in intense elliptically polarized laser fields. The experimental normalized ratios of low-order harmonic intensity to high-order harmonic intensity increase with ellipticity for both Ar and N2, and quantitatively depend on targets and trajectory paths. The experimental results are well reproduced by a nonadiabatic semiclassical simulation and explained by trajectory-based analysis. In addition, the influence of nuclear distance on the ratios is theoretically investigated. Our work reveals that the difference between atoms and molecules can be attributed to the influence of different ionic potentials, which depends on the molecular structure (internuclear distance) and alignment, on the evolution of the photoelectron.

Pages