科研成果

2022
乔爽, 王婷*, 张倩, 刘昕曜, 赵梦瑶. 长江源区重金属分布特征及生态风险评价. 北京大学学报(自然科学版). 2022;58(2):297-307.
陈腾. “青山”,还是“青衫”?. 读书. 2022;(10).
黄季焜, 胡瑞法, 易红梅, 盛誉, 王金霞, 宝明涛, 刘旭. 面向2050年我国农业发展愿景与对策研究. 中国工程科学. 2022;24(1):1-9.
陈美华;王延飞. 面向国家科技竞争战略的情报赋能研究——以应对美国涉华科技竞争战略为例. 图书情报知识. 2022;39(2):73-82.Abstract
 [目的/意义]为获得对抗优势,以把握美对华科技竞争战略走向为依据,深入探寻优化我国科技情报事业发展的路径,对实现情报支撑决策最优化和科技竞争效果最大化具有现实意义。[研究设计/方法]通过网络调研和内容分析法,梳理了美国拜登政府以及相关智库涉华科技竞争战略的实施与研究动向,总结美国对华科技竞争战略的主要特点;构建应对美国涉华科技竞争战略的情报赋能模型,提出我国面向大国科技竞争的情报赋能路径建设。[结论/发现]面向大国科技竞争的科技情报教育需要坚持创新与发展并行的理念,丰富情报人才培养模式;科技情报理论研究需要实现多学科融合的理论创新;科技情报工作则需提高战略定位,加强情报服务平台建设,形成共生、共存和共进的生态情报体系能力系统。[创新/价值] 以美国涉华科技竞争的最新战略动向为现实依据,以解析情报赋能国家科技安全与创新发展为理论基础,提出面向大国科技竞争的情报赋能建设路径,为未来我国国家科技战略的创新与发展提供了相应的建设依据。
王奇, 王刚桥, 陈永强, 刘奕. 面向社会计算的集成建模方法与应用系统. 计算机科学. 2022;49:25-29.Abstract
复杂社会系统建模是社会计算面临的首要问题。面向社会计算领域的建模流程与需求,提出了一种模型深度集成架构,称为POV框架。该框架由物理层、覆盖层和虚拟层3部分组成,提供了模型的组织、表达和集成方法。基于该方法搭建了面向社会计算数据模型交互共享集成平台,为研究者们提供包括数据资源、分析工具和建模仿真计算环境的社会计算实验平台。应用示例证明了该平台能够为研究者进行社会计算研究提供有效支撑。
张存禄, 马莉萍, 陈晓宇. 食堂消费大数据可以精准识别贫困生吗?——基于本科生行为数据、行政数据和问卷数据的实证研究. 教育经济评论 [Internet]. 2022;7(04):41-56. 访问链接
崔海丽, 朱红, 马莉萍. 高中生涯教育对学生未来规划清晰程度的影响——以强基新生为考察对象. 教育发展研究 [Internet]. 2022;42(10):67-76. 访问链接
张心悦, 马莉萍. 高等教育提升全要素生产率的作用机制. 教育研究 [Internet]. 2022;43(01):35-46. 访问链接
2021
Shi W, Liu J, Mukherjee A, Yang X, TANG X, Shen L, Zhao W, Sun N. 10.4 A 3.7mW 12.5MHz 81dB-SNDR 4th-Order CTDSM with Single-OTA and 2nd-Order NS-SAR, in 2021 IEEE International Solid- State Circuits Conference (ISSCC).Vol 64.; 2021:170-172.
Wang Z, Liu Y, Zhou P, Tan Z, Fan H, Zhang Y, Shen L, Ru J, Wang Y, Ye L, et al. A 148-nW Reconfigurable Event-Driven Intelligent Wake-Up System for AIoT Nodes Using an Asynchronous Pulse-Based Feature Extractor and a Convolutional Neural Network. IEEE Journal of Solid-State Circuits. 2021;56:3274-3288.Abstract
This article presents a 148-nW always-on wake-up system that drastically reduces the system power consumption of Internet of Things (IoT) sensor nodes while oftentimes operating in random-sparse-event (RSE) scenarios. To significantly reduce the long-term average (LTA) power consumption and realize multiapplication and intelligent event detection, three techniques are proposed: 1) In a three-stage pipelined event-driven architecture, a frame generator and a convolutional neural network intelligent inference engine (CNN IIE) in stage III are event-driven by the preliminary detectors in stage II, and the detectors are triggered by a level-crossing (LC) analog-to-digital converter (ADC), i.e., stage I, dramatically reducing the overall power consumption. 2) The clock-free pulse-based instant rate of change (IROC) feature extractor directly processes the asynchronous pulses of the LC-ADC outputs in the temporal domain instead of utilizing a conventional power-hungry frequency-domain method. 3) A reconfigurable IROC, the frame generator, and the CNN IIE provide adaptive intelligence for various IoT events, enhancing the accuracy of multipurpose detection with ultralow power. We demonstrate two artificial intelligence IoT (AIoT) applications at 0.6-V VDD. For electrocardiogram (ECG) recognition, one example works at a typical event rate (ER) of  4800/h, with an active power of 1.68 $μ \textW$ and a precision of up to 99%; the other is used for keyword spotting (KWS), where the chip achieves 378 nW at  720/h ER and 94% accuracy. The LTA power is bounded to 148 nW, while the event-driven chip is on call and waiting for events; this chip dominates the AIoT device battery life in RSE scenarios.
陆潘涛, 韩亚龙, 戴瀚程. 1.5ºC和2ºC目标下中国交通部门2050年的节能减排协同效益. 北京大学学报 (自然科学版) [Internet]. 2021;57:517-528. 访问链接
SONG J, Wang Y, TANG X, WANG R, HUANG R. A 16Kb Transpose 6T SRAM In-Memory-Computing Macro based on Robust Charge-Domain Computing, in IEEE Asian Solid-State Circuits Conference (ASSCC). Busan, Korea: IEEE Press; 2021.
Cai W, Zhang C, Suen HP, Ai S, Bai Y, Bao J, Chen B, Cheng L, Cui X, Dai H, et al. The 2020 Chinese Report of The Lancet Countdown on Health and Climate Change. The Lancet Public Health [Internet]. 2021;6:e64-e81. 访问链接
Cai W, Zhang C, Zhang S, Ai S, Bai Y, Bao J, Chen B, Chang N, Chen H, Cheng L, et al. The 2021 China Report of The Lancet Countdown on Health and Climate Change. The Lancet Public Health [Internet]. 2021;6:e932-e947. 访问链接
\textbfShen \textbfL, Gao Z, Yang X, Shi W, Sun N. [2021.ISSCC].27.7 A 79dB-SNDR 167dB-FoM Bandpass ΔΣ ADC Combining N-Path Filter with Noise-Shaping SAR, in 2021 IEEE International Solid- State Circuits Conference (ISSCC).Vol 64.; 2021:382-384.
KUANG Y, CUI X, ZHONG Y, LIU K, ZOU C, DAI Z, Wang Y, YU D, HUANG R. A 64K-neuron 64M-synapse 2.64pJ/SOP Neuromorphic Chip with All Memory on Chip for Artificial General Intelligence in 65nm CMOS. IEEE Transactions on Circuit and Systems II: Brief Paper [Internet]. 2021;68(7):2655-2659. 访问链接Abstract
Generally, computer-science-oriented artificial neural networks (ANNs) and neuroscience-oriented spiking neural networks (SNNs) are two main approaches to develop brainspired non von Neumann computing systems. The goal of exploring complex artificial intelligence (AI) systems demandsgeneral neuromorphic hardware platforms compatible with both of them. However, as a result of the obvious differences in their fundamental mathematical expression and coding scheme, many neuromorphic platforms or deep neural network (DNN) accelerators accommodate only one of them. This brief presents a reconfigurable scalable neuromorphic chip based on digital leaky integrate-and-fire (LIF) neuron model targeting low-cost large-scale systems. By unifying ANN and SNN paradigms within a LIF neuron framework with point-to-point (P2P) communication, the chip can accommodate most popular neural networks. The chip adopts distributed on-chip memory architecture with a capacity of 64K neurons and 64M synapses. It achieves a peak throughput of 12.29 GSOP/s at 1.2 V, 192MHz and peak energy efficiency of 2.64 pJ/SOP at 890 mV, 24MHz.The results of implementations of a spike-based spatio-temporal memory model and ternary-weight event-based convolutional neural networks (CNNs) demonstrate outstanding compatibility of the chip.
周智健, 王信, 常剑, 陈宏刚, 牛玉广. 660MW燃煤电厂SCR脱硝系统CFD模拟优化研究. 中国电机工程学报 [Internet]. 2021;41(19):6688-6699. 访问链接Abstract
为探究流场和组分浓度分布对SCR装置脱硝效率和氨逃逸的影响进而提升脱硝性能,基于ANSYS FLUENT软件平台、耦合多孔介质模型和E-R脱硝反应动力学模型,建立国内某660 MW燃煤机组SCR系统的三维计算流体力学模型;详细分析不同负荷下烟气速度分布、组分浓度分布、脱硝效率和氨逃逸等流动反应特性;进而针对分区喷氨和静态混合器对脱硝性能的影响进行模拟与优化。结果表明:当顶部导流板倾角与楔形弯头倾角相同时,流场分离现象消失,速度分布更加均匀。较之于均匀喷氨方式,分区喷氨可使NH_3浓度均匀性提高55%、出口NO浓度偏差降低50%。采用平板型混合器结合分区喷氨策略,催化剂入口截面NH3浓度偏差系数小于2.5%,出口截面NO浓度偏差系数小于8%,局部最大氨逃逸为1.82mg/m~3,脱硝效率提高了7%,实现SCR装置的稳定高效运行。
Mukherjee A, Gandara M, Yang X, Shen L, TANG X, Hsu C-K, Sun N. A 74.5-dB Dynamic Range 10-MHz BW CT-ΔΣ ADC With Distributed-Input VCO and Embedded Capacitive-π Network in 40-nm CMOS. IEEE Journal of Solid-State Circuits. 2021;56:476-487.Abstract
This work introduces a second-order voltage-controlled oscillator (VCO)-based continuous-time delta-sigma modulator (CTDSM) that incorporates a distributed-input VCO as the second-stage integrator and quantizer. The distributed-input VCO topology virtually eliminates the VCO's voltage-to-frequency (V-F) parasitic pole. One of the key ideas of this article is to demonstrate the use of a capacitive-π network in the modulator's loop filter to break the constraint between the size of the modulator's inner capacitive digital-to-analog converter (DAC) and the factor by which the front-end Gm-C integrator is impedance scaled. This, in turn, helps to significantly reduce both analog and digital powers. The prototype chip has been fabricated in a 40-nm CMOS process. Despite not using any DAC calibration or explicit dynamic element matching (DEM) circuits, the worst case spurious-free dynamic range (SFDR) is -82 dBc across the signal bandwidth. The fabricated CTDSM achieves a 71.8-dB signal-to-noise-and-distortion ratio (SNDR) and a 74.5-dB dynamic range (DR) in a 10-MHz bandwidth at 655 MS/s, yielding an SNDR-based Walden figure of merit (FoM) of 45.6 fJ/step, an SNDR-based Schreier FoM of 167.2 dB, and a DR-based Schreier FoM of 169.9 dB.
Lai L, Ji H, Zhang H, Liu R, Zhou C, Liu W, Ao Z, Li N, Liu C, Yao G, et al. Activation of peroxydisulfate by V-Fe concentrate ore for enhanced degradation of carbamazepine: Surface ≡V(III) and ≡V(IV) as electron donors promoted the regeneration of ≡Fe(II). Applied Catalysis B: Environmental [Internet]. 2021;282:119559. 访问链接Abstract
V-Fe concentrate ore was applied to activate peroxydisulfate (PDS) for carbamazepine (CBZ) degradation. The excellent performance of V-Fe concentrate ore was mainly ascribed to the quick electron transfer from surface ≡V(III) and ≡V (IV) to ≡Fe(III) for ≡Fe(II) regeneration, which was confirmed by XPS and XAS analyses. This accelerated ≡Fe(II) regeneration could thus lead to quick formation of HO, SO4−, O2− and effective degradation of CBZ. The degradation rate of CBZ could be also expressed by a kinetic model, i.e., −d[CBZ]/dt = (0.83 mM-0.55 min-1(g/L)-0.65) [CBZ]0.29[PDS]1.26[V-Fe]0.65. Combined with the measured intermediates and the results of DFT calculation, CBZ degradation pathway was proposed systematically. Moreover, this catalyst displayed excellent recyclability and general applicability for a broad substrate scope. This study suggests low valent vanadium makes crucial contributions to the high activity of V-Fe-based catalysts, and improves the understanding of electron transfer mechanism between V and Fe in PDS activation process.
Zhao Z, Zhang W, Liu W, Li Y, Ye J, Liang J, Tong M. Activation of sulfite by single-atom Fe deposited graphitic carbon nitride for diclofenac removal: The synergetic effect of transition metal and photocatalysis. Chemical Engineering Journal [Internet]. 2021;407:127167. 访问链接Abstract
Herein, through supramolecular gel assisted pre-configuration, a novel bamboo-like porous graphitic carbon nitride (g-C3N4) deposited with single-atom Fe was successfully prepared and used for sulfite (S(IV)) activation. Unexpectedly, owing to the presence of single-atom Fe, hybrid material with only 2.5‰ of Fe exhibited 16 times higher S(IV) activation efficiency for diclofenac removal than pure g-C3N4 under visible light irradiation. Moreover, a synergetic effect of Fe and g-C3N4 was found to play the dominate role, and the synergetic factor was calculated to be 0.84. The synergetic mechanism mainly related to the generation of surface Fe-S(IV) complex, which could be affected by S(IV) species or the presence of H2PO4−. DCF removal was significantly enhanced at alkaline condition, but the enhancement was mainly attributed to photocatalysis but not synergetic effect. Decarboxylation, hydroxylation, chlorine abstraction and cleavages at bridging N atom were the main degradation pathways of DCF, which agreed well with Fukui index prediction. The toxicity of DCF was alleviated during the degradation process through successful mineralization of chlorine atoms.

Pages