科研成果 by Year: 2021

2021
Wang JW, Zhao ZZ, Zeng XW, Liu XY, Hu* YF. A Tubular Flexible Triboelectric Nanogenerator with a Superhydrophobic Surface for Human Motion Detecting. Sensors. 2021;21:3634.
Wang JW, Zhao ZZ, Zeng XW, Liu XY, Hu* YF. A Tubular Flexible Triboelectric Nanogenerator with a Superhydrophobic Surface for Human Motion Detecting. Sensors. 2021;21:3634.
Liu F, Ma Z, Deng Y, Wang M, Zhou P, Liu W, Guo S, Tong M, Ma D. Tunable Covalent Organic Frameworks with Different Heterocyclic Nitrogen Locations for Efficient Cr(VI) Reduction, Escherichia coli Disinfection, and Paracetamol Degradation under Visible-Light Irradiation. Environmental Science & Technology [Internet]. 2021;55:5371-5381. 访问链接Abstract
Covalent organic frameworks (COFs) have great application potentials in photocatalytic water treatment. By using p-phenylenediamine with different numbers and locations of heterocyclic nitrogen atoms as a precursor, five types of COFs with different nitrogen positions were synthesized. We found that Cr(VI) photoreduction,Escherichia coli inactivation, and paracetamol degradation by COFs were heterocyclic nitrogen location-dependent. Particularly, the photocatalytic performance for all three tested pollutants by five types of COFs followed the order of the best performance for COF-PDZ with two ortho position heterocyclic N atoms, medium for COF-PMD with two meta position heterocyclic N atoms, and COF-PZ with two para position heterocyclic N atoms, and COF-PD with a single heterocyclic N atom, the worst performance for COF-1 without a heterocyclic N atom. Compared to the other COFs, COF-PDZ contained improved quantum efficiency and thus enhanced generation of electrons. The lower energy barriers and larger energy gaps of COF-PDZ contributed to its improved quantum efficiencies. The stronger affinity to Cr(VI) with lower adsorption energy of COF-PDZ also contributed to its excellent Cr(VI) reduction performance. By transferring into a more stable keto form, COF-PDZ showed great stability through five regeneration and reuse cycles. Overall, this study provided an insight into the synthesis of high-performance structure-dependent COF-based photocatalysts.
Liu F, Ma Z, Deng Y, Wang M, Zhou P, Liu W, Guo S, Tong M, Ma D. Tunable Covalent Organic Frameworks with Different Heterocyclic Nitrogen Locations for Efficient Cr(VI) Reduction, Escherichia coli Disinfection, and Paracetamol Degradation under Visible-Light Irradiation. Environmental Science and Technology [Internet]. 2021;55(8):5371-5381. 访问链接Abstract
Covalent organic frameworks (COFs) have great application potentials in photocatalytic water treatment. By using p-phenylenediamine with different numbers and locations of heterocyclic nitrogen atoms as a precursor, five types of COFs with different nitrogen positions were synthesized. We found that Cr(VI) photoreduction,Escherichia coli inactivation, and paracetamol degradation by COFs were heterocyclic nitrogen location-dependent. Particularly, the photocatalytic performance for all three tested pollutants by five types of COFs followed the order of the best performance for COF-PDZ with two ortho position heterocyclic N atoms, medium for COF-PMD with two meta position heterocyclic N atoms, and COF-PZ with two para position heterocyclic N atoms, and COF-PD with a single heterocyclic N atom, the worst performance for COF-1 without a heterocyclic N atom. Compared to the other COFs, COF-PDZ contained improved quantum efficiency and thus enhanced generation of electrons. The lower energy barriers and larger energy gaps of COF-PDZ contributed to its improved quantum efficiencies. The stronger affinity to Cr(VI) with lower adsorption energy of COF-PDZ also contributed to its excellent Cr(VI) reduction performance. By transferring into a more stable keto form, COF-PDZ showed great stability through five regeneration and reuse cycles. Overall, this study provided an insight into the synthesis of high-performance structure-dependent COF-based photocatalysts. © 2021 American Chemical Society.
Tunable covalent organic frameworks with different heterocyclic nitrogen locations for efficient Cr (VI) reduction, Escherichia coli disinfection, and paracetamol degradation under visible-light irradiation. Environmental Science & Technology [Internet]. 2021. 访问链接
Gao T, Li X, Han L, Wu Y. Tunable synaptic devices based on ambipolar MoTe2 transistor, in 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE; 2021:1–3.
Zou Y, Yu W, Zhang L, Wu C, Xiao L, Ding L. Tuning the bandgap of double perovskites. JOURNAL OF SEMICONDUCTORS. 2021;42.
Wu J, Ma J, Wang Y, Wang J. Understanding and predicting the burst of burnout via social media. Proceedings of the ACM on Human-Computer Interaction. 2021;4:1–27.
Liu K, Zakharova N, Adeyilola A, Gentzis T, Carvajal-Ortiz H, Fowler H. Understanding the CO2 adsorption hysteresis under low pressure: An example from the Antrim Shale in the Michigan Basin: Preliminary observations. Journal of Petroleum Science and Engineering [Internet]. 2021;203:108693. 访问链接Abstract
The gas adsorption hysteresis effects have strong implications for the characterization of the micropore structure, which is one of the most important properties of shales. This study describes one of the first investigations of low-pressure CO2 adsorption hysteresis illustrated on the Antrim Shale samples, Michigan Basin. A total of 23 samples were characterized by using a combination of X-Ray diffraction (XRD), Rock-Eval pyrolysis, scanning electron microscope (SEM) imaging and CO2 adsorption. The partial least linear regression (PLS) was employed to study the influence of rock composition on the micropore structures and hysteresis index (HI). The results showed that the micropore parameters (surface area and volume) are positively correlated to the amount of organic matter and clay minerals, and have a negative correlation to non-clay minerals. In the Antrim Shale samples, the CO2 adsorption hysteresis seen under low pressure appears to be controlled mainly by the pore network effect caused by the presence of ink-bottle shaped pores, rather than by the swelling of clays and organic matter.
Liu K, Jin Z, Zeng L, Ostadhassan M, Xu X. Understanding the creep behavior of shale via nano-DMA method. Energy Reports [Internet]. 2021;7:7478-7487. 访问链接Abstract
Understanding the creep behavior of shale is essential to precisely predict borehole instability issues and model fracturing of unconventional shale reservoirs. In this study, the creep behavior of shale in micron scale is investigated by integrating the nano-dynamic mechanical analysis (nano-DMA) grid nanoindentation (15 × 15 indents) and data clustering techniques. The results showed that the creep displacement, the creep rate, and hardness, both can be related through a logarithmic function with creep time. Furthermore, contact creep modulus increased as the hardness or Young’s modulus increased. The clustering analysis revealed that three separate phases are present in the samples where Phase 1(clay/organic matter) has the smallest contact creep modulus and Phase 3 (quartz) the largest. While creep is in progress, the creep displacement, hardness and contact creep modulus of all three phases obey the logarithmic function. Under the same creep time, reduction in the contact creep modulus of Phase 3 appears to be faster than Phase 1 while the creep rate of Phase 3 is much less than Phase 1. Ultimately, contact creep modulus is better correlated with hardness than Young’s modulus.
Han X, Chen K, Zhou Y, Qiu M, Fan C, Liu Y, Zhang T. A Unified Anomaly Detection Methodology for Lane-Following of Autonomous Driving Systems, in 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE; 2021:836–844.
Yuan X, Liu Y, Zhao Q, Regula B, Thompson J, Gu M. Universal and operational benchmarking of quantum memories. npj Quantum Information. 2021;7(1):1-8.
Wang J, Wang X, Fan* X, Chen* PR. Unleashing the Power of Bond Cleavage Chemistry in Living Systems. ACS Central ScienceACS Central Science. 2021;7:929-943.
Li Y, Liu B, Ye J, Jia T, Khuzestani RB, Sun JY, Cheng X, Zheng Y, Li X, Wu C, et al. Unmanned Aerial Vehicle Measurements of Volatile Organic Compounds over a Subtropical Forest in China and Implications for Emission Heterogeneity. ACS Earth and Space Chemistry. 2021;5:247-256.
Xie K. (Un)Preparing a Revolution: The Comintern in the Prelude to the 1926–1927 Uprisings in Indonesia. In: The Russian Revolution in Asia: From Baku to Batavia. London: Routledge; 2021. pp. 122-137. 访问链接Abstract
This chapter assesses the 1926-1927 Uprising in Indonesia across several interconnected geographic and institutional scales: In the Comintern, where exiled leaders of the Partai Komunis Indonesia conferred with Comintern representatives about the situation at home; in the highest levels of the Politburo, where disagreements over revolutionary tactics in China exacerbated the power struggle between Stalin and Trotsky; and in Indonesia itself, where colonial repression inspired the abortive uprising. In so doing, this chapter shows how the Uprising demonstrated the limits of internationalism. As PKI leaders were unable to maintain effective contact with the movement in Indonesia, gaps in information undermined decision-making and led to conflict over the applicability of Russian models to the Indonesian context. Debates over Moscow’s China policy diverted attention from other territories and drew PKI members into the Stalin-Trotsky feud. Comintern support for the Uprising, therefore, did not materialize, further undermining the communist movement in Indonesia.
Zheng Y, Jia S, Yu Z*, Liu JK*, Huang T. Unraveling Neural Coding of Dynamic Natural Visual Scenes via Convolutional Recurrent Neural Networks. Cell Patterns [Internet]. 2021:100350. PDFAbstract
Traditional models of retinal system identification analyze the neural response to artificial stimuli using models consisting of predefined components. The model design is limited to prior knowledge, and the artificial stimuli are too simple to be compared with stimuli processed by the retina. To fill in this gap with an explainable model that reveals how a population of neurons work together to encode the larger field of natural scenes, here we used a deep-learning model for identifying the computational elements of the retinal circuit that contribute to learning the dynamics of natural scenes. Experimental results verify that the recurrent connection plays a key role in encoding complex dynamic visual scenes while learning biological computational underpinnings of the retinal circuit. In addition, the proposed models reveal both the shapes and the locations of the spatiotemporal receptive fields of ganglion cells.
Kong R, Sun Q, Cheng S, Fu J, Liu W, Letcher RJ, Liu C. Uptake, excretion and toxicity of titanate nanotubes in three stains of free-living ciliates of the genus Tetrahymena. Aquatic Toxicology [Internet]. 2021;233:105790. 访问链接Abstract
The potential exposure of titanate nanotubes (TNTs) to wildlife and humans may occur as a result of increased use and application as functional nanomaterials. However, there is a dearth of knowledge regarding the pathways of uptake and excretion of TNTs and their toxicity in cells. In this study, three strains of the Tetrahymena genus of free-living ciliates, including a wild type strain (SB210) and two mutant strains (SB255: mucocyst-deficient; NP1: temperature-sensitive “mouthless’’), were used to study the pathways of uptake and excretion and evaluate the cytotoxicity of TNTs. The three Tetrahymena strains were separately exposed to 0, 0.01, 0.1, 1 or 10 mg/L of TNTs, and cells were collected at different time points for quantification of intracellular TNTs (e.g., 5, 10, 20, 40, 60, 90 and 120 min) and evaluation of cytotoxicity (12 and 24 h). TNT contents in NP1 and SB255 were greater or comparable to the contents in SB210 while exposure to 10 mg/L TNTs in 120 min. Furthermore, exposure to 10 mg/L TNTs for 24 h caused greater decreases in cell density of NP1 (38.2 %) and SB255 (36.8 %) compared with SB210 (26.5 %) and upregulated the expression of caspase 15 in SB210. Taken together, our results suggested that TNT uptake by pinocytosis and excretion by exocytosis in Tetrahymena, and the exposure could cause cytotoxicity which can offer novel insights into the accumulation kinetics of nanotubes and even nanomaterials in single cell.
Gkatzelis GI, Papanastasiou DK, Karydis VA, Hohaus T, Liu Y, Schmitt SH, Schlag P, Fuchs H, Novelli A, Chen Q, et al. Uptake of water-soluble gas-phase oxidation products drives organic particulate pollution in Beijing. Geophysical Research Letters. 2021:e2020GL091351.Abstract
Abstract Despite the recent decrease in pollution events in Chinese urban areas, the World Health Organization air quality guideline values are still exceeded. Observations from monitoring networks show a stronger decrease of organic aerosol directly emitted to the atmosphere relative to secondary organic aerosol (SOA) generated from oxidation processes. Here, the uptake of water-soluble gas-phase oxidation products is reported as a major SOA contribution to particulate pollution in Beijing, triggered by the increase of aerosol liquid water. In pollution episodes, this pathway is enough to explain the increase in SOA mass, with formaldehyde, acetaldehyde, glycolaldehyde, formic, and acetic acid alone explaining 15 to 25% of the SOA increase. Future mitigation strategies to reduce non-methane volatile organic compound emissions should be considered to reduce organic particulate pollution in China.
Gkatzelis GI, Papanastasiou DK, Karydis VA, Hohaus T, Liu Y, Schmitt SH, Schlag P, Fuchs H, Novelli A, Chen Q, et al. Uptake of Water-soluble Gas-phase Oxidation Products Drives Organic Particulate Pollution in Beijing. Geophysical Research Letters [Internet]. 2021;48:e2020GL091351. 访问链接Abstract
Abstract Despite the recent decrease in pollution events in Chinese urban areas, the World Health Organization air quality guideline values are still exceeded. Observations from monitoring networks show a stronger decrease of organic aerosol directly emitted to the atmosphere relative to secondary organic aerosol (SOA) generated from oxidation processes. Here, the uptake of water-soluble gas-phase oxidation products is reported as a major SOA contribution to particulate pollution in Beijing, triggered by the increase of aerosol liquid water. In pollution episodes, this pathway is enough to explain the increase in SOA mass, with formaldehyde, acetaldehyde, glycolaldehyde, formic acid, and acetic acid alone explaining 15%–25% of the SOA increase. Future mitigation strategies to reduce non-methane volatile organic compound emissions should be considered to reduce organic particulate pollution in China.
Zu K, Wang Z, Zhu X, Lenoir J, Shrestha N, Lyu T, Luo A, Li Y, Ji C, Peng S, et al. Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Science of the Total EnvironmentScience of the Total Environment. 2021;783:146896.Abstract
Elevational range shifts of mountain species in response to climate change have profound impact on mountain biodiversity. However, current evidence indicates great controversies in the direction and magnitude of elevational range shifts across species and regions. Here, using historical and recent occurrence records of 83 plant species in a subtropical mountain, Mt. Gongga (Sichuan, China), we evaluated changes in species elevation centroids and limits (upper and lower) along elevational gradients, and explored the determinants of elevational changes. We found that 63.9% of the species shifted their elevation centroids upward, while 22.9% shifted downward. The changes in centroid elevations and range size were more strongly correlated with changes in lower than upper limits of species elevational ranges. The magnitude of centroid elevation shifts was larger than predicted by climate warming and precipitation changes. Our results show complex changes in species elevational distributions and range sizes in Mt. Gongga, and that climate change, species traits and climate adaptation of species all influenced their elevational movement. As Mt. Gongga is one of the global biodiversity hotspots, and contains many threatened plant species, these findings provide support to future conservation planning.

Pages