科研成果 by Year: 2018

2018
Liu C, Liu J, Yan Z. Personalizing information retrieval using search behaviors and time constraints, in Proceedings of the 2018 Conference on Human Information Interaction & Retrieval.; 2018:261–264.
Zhao X, Du P, Cai Z, Wang T, Fu J, Liu W. Photocatalysis of bisphenol A by an easy-settling titania/titanate composite: Effects of water chemistry factors, degradation pathway and theoretical calculation. Environmental Pollution [Internet]. 2018;232:580 - 590. 访问链接
Fu J, Kyzas GZ, Cai Z, Deliyanni EA, Liu W, Zhao D. Photocatalytic degradation of phenanthrene by graphite oxide-TiO2-Sr(OH)2/SrCO3 nanocomposite under solar irradiation: Effects of water quality parameters and predictive modeling. Chemical Engineering Journal [Internet]. 2018;335:290 - 300. 访问链接
Luo J, Lv Z, Huang Q-Q, Chen C, HUANG R. A Physical Current Model for Self-Depleted T-gate Schottky Barrier Tunneling FET with Low SS and High I ON/I OFF. 2018 14th Ieee International Conference on Solid-State and Integrated Circuit Technology (Icsict). 2018:1-3.
Luo J, Lv Z, Huang Q-Q, Chen C, HUANG R. A Physical Current Model for Self-Depleted T-gate Schottky Barrier Tunneling FET with Low SS and High I ON/I OFF. 2018 14th Ieee International Conference on Solid-State and Integrated Circuit Technology (Icsict). 2018:1-3.
Zhang G-Y, Xu J-L, Vasyunin A  I, Semenov D  A, Wang J-J, Dib S, Liu T, Liu S-Y, Zhang C-P, Liu X-L, et al. Physical properties and chemical composition of the cores in the California molecular cloud. \aap. 2018;620:A163.
Wu KL, Tang HZ. On physical-constraints-preserving schemes for special relativistic magnetohydrodynamics with a general equation of state. Z. Angew. Math. Phys. 2018.
Bao R, Hu Y, Yang Q, Pan C*. Piezo-phototronic effect on optoelectronic nanodevices. MRS Bulletin. 2018;43:952–958.
Bao R, Hu Y, Yang Q, Pan C*. Piezo-phototronic effect on optoelectronic nanodevices. MRS Bulletin. 2018;43:952–958.
Xie Z, Li S, Zhou K, Vuletic I, Meng X, Zhu S, Xu H, Yang K, Xu B, Zhang J, et al. PKU-PET-II: A novel SiPM-based PET imaging system for small animals. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2018;877:104–111.
Lin F, Yang G, Niu C, Wang Y, Zhu Z, Luo H, Dai C, Mayerich D, Hu Y, Hu J, et al. Planar Alignment of Graphene Sheets by a Rotating Magnetic Field for Full Exploitation of Graphene as a 2D Material. Advanced Functional Materials [Internet]. 2018;28:1805255. LinkAbstract
Abstract Planar alignment of disc-like nanomaterials is required to transfer their superior anisotropic properties from microscopic individual structures to macroscopic collective assemblies. However, such alignment by electrical or magnetic field is challenging due to their additional degrees of orientational freedom compared to that of rod-like nanostructures. Here, the realization of planar alignment of suspended graphene sheets using a rotating magnetic field produced by a pair of small NdFeB magnets and subsequent demonstration of high optical anisotropy and potential novel device applications is reported. Compared to partially aligned sheets with a static magnetic field, planar aligned graphene suspensions exhibit a near-perfect order parameter, much higher birefringence and anisotropic absorption/transmission. A unique feature of discotic nanomaterial assemblies is that the observed order parameter and optical property can vary from isotropic to partial and complete alignment depending on the experimental configuration. By immobilizing and patterning aligned graphene in a UV-curable polymer resin, we further demonstrated an all-graphene permanent display, which exhibits wide-angle, high dark-bright contrast in either transmission or reflection mode without any polarizing optics. The ability to control and pattern graphene orientation in all three dimensions opens up new exploration and broad device applications of graphene.
Yi H-weon, Lee J-E, Liu T, Kim K-T, Choi M, Eden D, Evans, Neal J. II, Di Francesco J, Fuller G, Hirano N, et al. Planck Cold Clumps in the \ensuremathłambda Orionis Complex. II. Environmental Effects on Core Formation}. \apjs. 2018;236:51.
Chen S, Wang W, Xu W, Wang Y, Wan H, Chen D, Tang Z, Tang X, Zhou G, Xie Z, et al. Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of SciencesProceedings of the National Academy of Sciences. 2018;115:4027-4032.Abstract
Soil carbon sequestration plays an important role in mitigating anthropogenic increases in atmospheric CO2 concentrations. Recent studies have shown that biodiversity increases soil organic carbon (SOC) storage in experimental grasslands. However, the effects of species diversity on SOC storage in natural ecosystems have rarely been studied, and the potential mechanisms are yet to be understood. The results presented here show that favorable climate conditions, particularly high precipitation, tend to increase both species richness and belowground biomass, which had a consistent positive effect on SOC storage in forests, shrublands, and grasslands. Nitrogen deposition and soil pH generally have a direct negative effect on SOC storage. Ecosystem management that maintains high levels of plant diversity can enhance SOC storage and other ecosystem services that depend on plant diversity.Despite evidence from experimental grasslands that plant diversity increases biomass production and soil organic carbon (SOC) storage, it remains unclear whether this is true in natural ecosystems, especially under climatic variations and human disturbances. Based on field observations from 6,098 forest, shrubland, and grassland sites across China and predictions from an integrative model combining multiple theories, we systematically examined the direct effects of climate, soils, and human impacts on SOC storage versus the indirect effects mediated by species richness (SR), aboveground net primary productivity (ANPP), and belowground biomass (BB). We found that favorable climates (high temperature and precipitation) had a consistent negative effect on SOC storage in forests and shrublands, but not in grasslands. Climate favorability, particularly high precipitation, was associated with both higher SR and higher BB, which had consistent positive effects on SOC storage, thus offsetting the direct negative effect of favorable climate on SOC. The indirect effects of climate on SOC storage depended on the relationships of SR with ANPP and BB, which were consistently positive in all biome types. In addition, human disturbance and soil pH had both direct and indirect effects on SOC storage, with the indirect effects mediated by changes in SR, ANPP, and BB. High soil pH had a consistently negative effect on SOC storage. Our findings have important implications for improving global carbon cycling models and ecosystem management: Maintaining high levels of diversity can enhance soil carbon sequestration and help sustain the benefits of plant diversity and productivity.
Qin XY, Juan J, Xiang X, Wei YQ, Zuo SW, Huang T, Chen DF, Marshall R, Xiong J, Guo W, et al. Plasma C-Reactive Protein and Abdominal Aortic Aneurysm: A Mendelian Randomization Analysis. Chin Med J (Engl)Chin Med J (Engl)Chin Med J (Engl). 2018;131:2630-2633.
Plasmonic sensing and modulation based on Fano resonances
Chen* J, Gan F, Wang Y, Li G. Plasmonic sensing and modulation based on Fano resonances. Advanced Optical Materials [Internet]. 2018;6:1701152. 访问链接
Wang MY, Chen M, Zhanghao K, Zhang X, Jing ZL, Gao JT, Zhang MQ, Jin DY, Dai ZF, Xi P, et al. Polarization-based super-resolution imaging of surface-enhanced Raman scattering nanoparticles with orientational information. Nanoscale [Internet]. 2018;10(42):19757-19765. 访问链接Abstract
Raman scattering provides key information of the biological environment through light-molecule interaction; yet, it is generally very weak to detect. Surface-enhanced Raman scattering (SERS) can boost the Raman signal by several orders-of-magnitude, and thus is highly attractive for biochemical sensing. However, conventional super-resolution imaging of SERS is challenging as the Raman signal is generated from the virtual state which cannot be easily modulated as fluorescence. Here, we demonstrate super-resolution microscopy with a surface-enhanced Raman scattering (SERS) signal, with a resolution of approximately 50 nm. By modulating the polarization angle of the excitation laser, the SERS nanorods display a dramatic anisotropy effect, allowing nanoscale orientation determination of multiple dipoles with dense concentration. Furthermore, a well-established defocused analysis was performed to reconfirm the orientation accuracy of super-resolved SERS nanorods. Sub-diffraction resolution was achieved in the imaging of SERS nanorod labeled vesicles in fixed macrophages. Finally, we demonstrate dynamic SERS nanorod tracking in living macrophages, which provides not only the particle trajectory with high spatial resolution but also the rotational changes at the nanometer scale. This pioneering study paves a new way for subcellular super-resolution imaging with the SERS effect, shedding light on wider biological applications.
Son M, Yang W, Bucs SS, Nava-Ocampo MF, Vrouwenvelder JS, Logan BE. Polyelectrolyte-based sacrificial protective layer for fouling control in reverse osmosis desalination. Environmental Science & Technology Letters. 2018;5:584–590.
Son M, Yang W, Bucs SS, Nava-Ocampo MF, Vrouwenvelder JS, Logan BE. Polyelectrolyte-based sacrificial protective layer for fouling control in reverse osmosis desalination. Environmental Science & Technology Letters. 2018;5(9):584-590.
Yang J, Xie X, Xiang N, Tian Z-X, Dixon R, Wang Y-P. Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology. Proceedings of the National Academy of Sciences [Internet]. 2018;115(36):E8509-E8517. 访问链接
Deng H, Molins S, Trebotich D, Steefel C, DePaolo D. Pore-scale numerical investigation of the impacts of surface roughness: Upscaling of reaction rates in rough fractures. Geochimica et Cosmochimica Acta. 2018;239:374–389.

Pages