Antibiotic resistance genes (ARGs) are regarded as emerging contaminants related with human activities. Aquatic environments of an urban city are apt for the persistence and prevalence of ARGs. In this study, we investigated the occurrence and distribution of ARGs and integrase genes in the sediment samples collected from drinking water sources, urban rivers, and coastal areas of Zhuhai, China, in the dry and wet seasons of 2016. The results show that sulfonamide resistance gene of sulII was present at the highest detection frequency (85.71%); and its average concentrations were also the highest in both dry and wet seasons (3.78×107 and 9.04×107 copies/g sediment, respectively), followed by tetC, tetO, tetA, ermB, dfrA1, and blaPSE-1. Temporally, the concentrations of total ARGs in the wet season were likely higher than those in the dry season; and spatially, the concentrations of total ARGs in the drinking water sources were substantially lower than those in the urban rivers and nearby coastal areas, indicating the different degrees of anthropogenic impact and consequent health risks. Positive correlations were found between intI1 and each quantitative ARG in all wet season samples rather than dry season samples, which suggested higher temperature and more rain in summer might have positive influences on ARG dissemination, especially that mediated by intI1 gene and class I integrons.
In this paper, we develop a skeletal ontology for eco-industrial parks. A top-down conceptual framework including five operating levels (unit operations, processes, plants, industrial resource networks and eco-industrial parks) is employed to guide the design of the ontology structure. The detailed ontological representation of each level is realized through adapting and extending OntoCAPE, an ontology of the chemical engineering domain. Based on the proposed ontology, a framework for distributed information management is proposed for eco-industrial parks. As an example, this ontology is used to create a knowledge base for Jurong Island, an industrial park in Singapore. Its potential uses in supporting process modeling and optimization and facilitating industrial symbiosis are also discussed in the paper.
C-Maf Inducing Protein (CMIP) gene polymorphisms were reported to be associated with type 2 diabetes mellitus (T2DM). Whether the association between CMIP and T2DM is mediated via obesity-related phenotypes is still unclear. We analyzed the association of CMIP rs2925979 with T2DM and a comprehensive set of obesity-related phenotypes in 1576 families ascertained from a Chinese population. These families included a total of 3444 siblings (1582 with T2DM, 963 with prediabetes, and 899 with a normal glucose level). Using multi-level mixed effects regression models, we found that each copy of CMIP rs2925979_T allele was associated with a 29% higher risk of T2DM in females (p = 9.30 x 10(-4)), while it was not significantly associated with T2DM in males (p = 0.705). Meanwhile, rs2925979_T allele was associated with lower levels of body mass index (BMI), waist circumference (WC), hip circumference (HC), percentage of body fat (PBF), PBF of arms, PBF of legs, and PBF of trunk in nondiabetes females (all p < 0.05). The opposite associations of rs2925979_T allele with T2DM and obesity-related phenotypes suggest that CMIP may exert independent pleiotropic effects on T2DM and obesity-related phenotypes in females.
Air quality monitoring networks play a significant role in identifying the spatiotemporal patterns of air pollution, and they need to be deployed efficiently, with a minimum number of sites. The revision and optimal adjustment of existing monitoring networks is crucial for cities that have undergone rapid urban expansion and experience temporal variations in pollution patterns. The approach based on the Weather Research and Forecasting–California PUFF (WRF-CALPUFF) model and genetic algorithm (GA) was developed to design an optimal monitoring network. The maximization of coverage with minimum overlap and the ability to detect violations of standards were developed as the design objectives for redistributed networks. The non-dominated sorting genetic algorithm was applied to optimize the network size and site locations simultaneously for Shijiazhuang city, one of the most polluted cities in China. The assessment on the current network identified the insufficient spatial coverage of SO2 and NO2 monitoring for the expanding city. The optimization results showed that significant improvements were achieved in multiple objectives by redistributing the original network. Efficient coverage of the resulting designs improved to 60.99% and 76.06% of the urban area for SO2 and NO2, respectively. The redistributing design for multi-pollutant including 8 sites was also proposed, with the spatial representation covered 52.30% of the urban area and the overlapped areas decreased by 85.87% compared with the original network. The abilities to detect violations of standards were not improved as much as the other two objectives due to the conflicting nature between the multiple objectives. Additionally, the results demonstrated that the algorithm was slightly sensitive to the parameter settings, with the number of generations presented the most significant effect. Overall, our study presents an effective and feasible procedure for air quality network optimization at a city scale.
The compatibility of Au-free (Ti/Al/Ti/TiN) ohmic contacts in the gate-first double-metal (GFDM) process for AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) and Schottky barrier diodes (SBDs) on the same 150-mm wafer was investigated and discussed for the first time, including contact pretreatments, Al diffusion in dielectric layers, and vias (contact windows between two metal layers) etching conditions. All of these steps are crucial to ohmic contacts as well as overall AlGaN/GaN device fabrication process. With the optimized ohmic contacts steps, not only an extremely low ohmic contact resistance (RC) value of 1.07 Omega . mm but also an excellent uniformity on the 150-mm wafer was obtained. The performance and uniformity of the MIS-HEMTs and SBDs based on the optimized GFDM process were also discussed.
The compatibility of Au-free (Ti/Al/Ti/TiN)ohmic contacts in the gate-first double-metal (GFDM)process for AlGaN/GaN metal-insulator-semiconductorhigh-electron-mobility transistors (MIS-HEMTs) and Schottkybarrier diodes (SBDs) on the same 150-mm wafer wasinvestigated and discussed for the first time, including contactpre-treatments, Al diffusion in dielectric layers, and vias(contact windows between two metal layers) etching conditions.All of these steps are crucial to ohmic contacts as wellas overall AlGaN/GaN device fabrication process. With theoptimized ohmic contacts steps, not only an extremely lowohmic contact resistance (RC) value of 1.07 ·mm but alsoan excellent uniformity on the 150-mm wafer was obtained.The performance and uniformity of the MIS-HEMTs andSBDs based on the optimized GFDM process were alsodiscussed.
The sources, formation mechanism and amount of organosulfates (OS) in atmospheric aerosol are not yet well understood, partly due to the lack of authentic standardsfor quantification. In this study, we report an improved robust procedure for the synthesis of organosulfates with different functional groups. Nine authentic organosulfate standards were synthesized and four standards (benzyl sulfate, phenyl sulfate, glycolic acid sulfate, and hydroxyacetone sulfate) were used to quantify their ambient concentrations. The authentic standards and ambient aerosol sampleswere analyzed using an optimized ultra performance liquid chromatography–electrospray ionization-tandem mass spectrometric method (UPLC–ESI–MS/MS). The recovery ranged from 80.4 to 93.2 %, the limits of detection and limits of quantification obtained were 1.1–16.7 and 3.4– 55.6 pgm-3, respectively. Measurements of ambient aerosol particle samples collected in winter 2013/2014 in urban Xi’an, northwestern China, show that glycolic acid sulfate (77.349.2 ngm-3/ is the most abundant species of the identified organosulfates followed by hydroxyacetone sulfate (1.30.5 ngm-3/, phenyl sulfate (0.140.09 ngm-3/,and benzyl sulfate (0.040.01 ngm-3/. Except for hydroxyacetone sulfate, which seems to form mainly from biogenic emissions in this region, the organosulfates quantified during winter in Xi’an show an increasing trend with an increase in the mass concentrations of organic carbon indicating their anthropogenic origin.
Despite the rise of interest in emerging market multinationals (EMNEs), the question of whether outward foreign direct investment (FDI) influences their resource acquisition in home countries remains underexplored. Contrary to the prior literature, which contends that EMNEs build outbound linkage through outward FDI so as to leverage outbound resources, this paper, however, focuses on whether outbound linkage influences their inbound resource leverage from home countries as well. Drawing on signaling theory, we propose that outbound linkage to developed countries, developing countries, and tax havens via outward FDI may reflect EMNEs’ different quality and prospects, which in turn influence their inbound leverage of government, financial, and market resources, respectively. Using panel data of 581 Chinese listed firms during the period 2002–2012, we largely verified our hypotheses, thus extending the boundary of the consequences of outward FDI on EMNEs in the signaling theory perspective.