Although the recently discovered monolayer transition metal dichalcogenides exhibit novel electronic and optical properties, fundamental physical issues such as the quasiparticle bandgap tunability and the substrate effects remain undefined. Herein, we present the report of a quasi-one-dimensional periodically striped superstructure for monolayer MoS2 on Au(100). The formation of the unique striped superstructure is found to be mainly modulated by the symmetry difference between MoS2 and Au(100) and their lattice mismatch. More intriguingly, we find that the monolayer MoS2 is heavily n-doped on the Au(100) facet with a bandgap of 1.3 eV, and the Fermi level is upshifted by ∼0.10 eV on the ridge (∼0.2 eV below the conduction band) in contrast to the valley regions (∼0.3 eV below the conduction band) of the striped patterns after high-temperature sample annealing process. This tunable doping effect is considered to be caused by the different defect densities over the ridge/valley regions of the superstructure. Additionally, an obvious bandgap reduction is observed in the vicinity of the domain boundary for monolayer MoS2 on Au(100). This work should therefore inspire intensive explorations of adlayer-substrate interactions, the defects, and their effects on band-structure engineering of monolayer MoS2.
Wang GH, Zhang RY, Gomez ME, Yang LX, Zamora ML, Hu M, Lin Y, Peng JF, Guo S, Meng JJ, et al.Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of AmericaProceedings of the National Academy of Sciences of the United States of AmericaProceedings of the National Academy of Sciences of the United States of America. 2016;113:13630-13635.Abstract
Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.
Zheng X, Guo L, Liang H, Wang P, Wang S, Wang T, Rong X, Sheng B, Yang X, Xu F, et al.Photoconductivity in InxGa1-xN epilayers. Optical Materials Express. 2016;6:815–822.
In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.
Subwavelength plasmonic waveguides are the most promising candidates for developing planar photonic circuitry platforms. In this study a subwavelength metallic ridge waveguide is numerically and experimentally investigated. Differing from previous plasmonic waveguides, the metallic strip of the subwavelength ridge waveguide is placed on a thick metal film. It is found that the surface-plasmon-polariton (SPP) waveguide modes result from the coupling of the corner modes in the two ridge corners. The bottom metal film has a great influence on the SPP modes, and nearly all the evanescent fields of the SPP modes are tightly confined outside the ridge waveguide. Simulations show that 50% of the total power flow in the SPP mode can be confined outside the ridge waveguide with an area of only about λ 2/20. The propagation length is still about 10 times the plasmon wavelength. Through comparison with a metallic strip placed directly on the dielectric substrate, the proposed ridge waveguide exhibits a much higher sensing performance. This plasmonic ridge waveguide with deep-subwavelength outside-field confinements is of significance in a range of nano-optics applications, especially in nanosensing.
The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density. (C) 2016 AIP Publishing LLC.
The community structure of ammonia-oxidizing microorganisms is sensitive to various environmental factors, including pollutions. In this study, real-time PCR and 454 pyrosequencing were adopted to investigate the population and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) temporally and spatially in the sediments of an industrial effluent receiving area in the Qiantang River’s estuary, Hangzhou Bay. The abundances of AOA and AOB amoA genes fluctuated in 105–107 gene copies per gram of sediment; the ratio of AOA amoA/AOB amoA ranged in 0.39–5.52. The AOA amoA/archaeal 16S rRNA, AOB amoA/bacterial 16S rRNA, and AOA amoA/AOB amoA were found to positively correlate with NH4+-N concentration of the seawater. Nitrosopumilus cluster and Nitrosomonas-like cluster were the dominant AOA and AOB, respectively. The community structures of both AOA and AOB in the sediments exhibited significant seasonal differences rather than spatial changes in the effluent receiving area. The phylogenetic distribution of AOB in this area was consistent with the wastewater treatment plants (WWTPs) discharging the effluent but differed from the Qiantang River and other estuaries, which might be an outcome of long-term effluent discharge.
Health risk of residents dwelling around e-waste recycling zones has been a global concern, but has not been adequately examined. The present study was intended to evaluate the potential health risk of residents through inhalation exposure to size-fractionated particle-bound heavy metals in a typical e waste recycling zone, South China. Anthropogenic metals (Zn, Se, Pb, Sb, As, and Cd) were predominantly enriched in fine particles (D-P < 1.8 mu m), whereas the crustal elements,(Ti, Fe, and Co) tended to accumulate in coarse particles (D-p > 1.8 mu m). Although the daily inhalation intakes of the target metals were significantly lower than those through food consumption and ingestion of house dust, the hazard quotients of total metals for adults (95% CI: 1.0-5.5) and children (95% CI: 3.0-17) were greater than 1. Moreover, the incremental lifetime cancer risks of five carcinogenic metals (Cr, Co, Ni, As, and Cd) for adults and children were 1.3 x 10(-3) (95% CI: 4.1 x 10(-4)-3.0 x 10(-3)) and 3.9 x 10(-3) (95% CI: 1.3 x 10(-3)-8.6 x 10(-3)), respectively, substantially higher than the acceptable cancer risk range of 10(-6)-10(-4). All these findings suggested that health risks were high for local residents dwelling around the e-waste recycling zone through inhalation exposure to particle-bound heavy metals, for both adults and children. (C) 2016 Elsevier B.V. All rights reserved.