There has been ever-increasing international interest in investigating the long-term emissions of chemicals in products (CiPs) throughout their entire life cycle in the anthroposphere. Hexabromocyclododecane (HBCDD) is a contemporary example of special interest due to the recent listing of this hazardous flame retardant in the Stockholm Convention and the consequent need for parties to take appropriate measures to eliminate this compound. Here, we conducted a scenario-based dynamic substance flow analysis, coupled with interval linear programming, to forecast the future HBCDD emissions in China in order to assist with the implementation of the Stockholm Convention in this current world's predominant HBCDD manufacturing and consuming country. Our results indicate that, under a business-as-usual scenario, the cumulative HBCDD production will amount to 238,000聽tonnes before its phase-out, 79% of which will be consumed in domestic market, accumulate as stocks in flame-retarded polystyrene insulation boards, and ultimately end up in demolition waste. While the production is scheduled to end in ca. 2021, emissions of HBCDD would continue until after 2100. For the entire simulation period 2000鈥2100, 44% of total cumulative emissions will arise from the industrial manufacture of HBCDD-associated end-products, whereas 49% will come from the end-of-life disposals of HBCDD-containing waste. The most effective end-of-life disposal option for minimizing emissions we found was, a pre-demolition screening combined with complete incineration. Our study warns of the huge challenges that China would face in its eliminating HBCDD contamination in the following decades, and provides an effective methodology for a wider range of countries to recognize and tackle their long-term emission problems of hazardous CiPs.
学界提及陆其安《神棍亚历山大》(Lucian, Alexander the false prophet)的 伊比鸠鲁领袖阿马斯翠的雷皮度(Lepidus of Amastris)时,往往将此人与一篇 出土于阿马斯翠(Amastris)的 CIG 4149(即 Marek 1993, p. 162 Kat. Amastris no. 12)Tiberius Claudius Lepidus 当作是同一人,但如此推论多没有提出具体证 明。本文探讨将两人视为同一人在证据上以及推论上会出现的问题,并主张 在证据不足的情况下,若采用 Prosopographia Imperii Romani 较为保守的说法,比较合理。
In the Alexander the False Prophet, Lucian presents a biographical account of Alexander of Abonuteichos, who founded a snake oracle cult in Paphlagonia. This oracle cult eventually spread to Rome under the crafty guidance of its founder Alexander, who used deception, trickery, and human flaw to ensnare laymen and dignitaries alike. Lucian informs us that Alexander was perplexed by Lepidus of Amastris and his Epicurean followers, who doubted Alexander's oracles and made fun of his craft. Scholars were able to link many of the personages in Alexander's biography to historical persons based on inscriptions and literary accounts by other authors, and Lepidus was linked to an inscription found at Amastris, which commemorated one Tiberius Claudius Lepidus, 'high-priest of Pontus' and 'president of the city. This paper examines this identification, and finds that alternative interpretations on the connection between Lucian's Lepidus and the Lepidus inscription ought to be considered.
Fine particulate matter (PM2.5) pollution poses significant health risks worldwide, including metabolic syndrome-related diseases with the characteristic feature of insulin resistance. However, the mechanism and influencing factors of this effect are poorly understood. In this serial in vitro study, we aimed at testing the hypothesis that macrophage-mediated effects of PM2.5 on hepatic insulin resistance depend on its chemical composition. Mouse macrophages were exposed to PM2.5 that had been collected during summer or winter in Beijing, which represented different compositions of PM2.5. Thereafter, hepatocytes were treated with macrophage-conditioned medium (CM). PM2.5 induced interleukin-6, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 expression and secretion in macrophages, particularly after winter PM2.5 exposure. Correspondingly, winter CM weakened hepatocellular insulin-stimulated glucose consumption. Further investigation revealed that the normal insulin pathway was suppressed in winter CM-treated hepatocytes, with increased phosphorylation of insulin receptor substrate 1 at serine residue 307 (Ser307) and decreased phosphorylation of protein kinase B (PKB/AKT) and forkhead box transcription factor O1 (FoxO1). Moreover, c-Jun N-terminal kinase, a key moderator of the sensitivity response to insulin stimulation, was activated in hepatocytes treated with winter CM. Although further studies are warranted, this preliminary study suggested an association between PM composition and insulin resistance, thus contributing to our understanding of the systemic toxicity of PM2.5.
Zhao X, Chui E. Mainland China. In: International perspectives on older Adult Education. Springer; 2016. pp. 99-109.
We establish a variational principle for properly mapping a fractional quantum Hall state to a fractional Chern insulator (FCI). We find that the mapping has a gauge freedom which could generate a class of FCI ground-state wave functions appropriate for different forms of interactions. Therefore, the gauge should be fixed by a variational principle that minimizes the interaction energy of the FCI model. For a soft and isotropic electron-electron interaction, the principle leads to a gauge coinciding with that for maximally localized two-dimensional projected Wannier functions of a Landau level.
Peng JF, Hu M, Guo S, Du ZF, Zheng J, Shang DJ, Zamora ML, Zeng LM, Shao M, Wu YS, et al.Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proceedings of the National Academy of Sciences of the United States of AmericaProceedings of the National Academy of Sciences of the United States of AmericaProceedings of the National Academy of Sciences of the United States of America. 2016;113:4266-4271.Abstract
Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact inmore polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.
Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact inmore polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.
Abstract Beginning in the early 1990’s, grazing lands once held in common were contracted to individual households in the rangeland regions of China. The resulting fragmentation of rangelands has led to ecological and social problems. As China seeks to address intractable poverty and rangeland degradation, attention has turned to rental, or transfer, of contracted grazing land as a market-based approach to re-aggregating grazing land into larger units that support economies of scale. However, given that many pastoral regions still maintain community customary institutions, what the relationship between market mechanisms and local customary institutions should be in rangeland management needs further analysis. This paper applies comparative case studies of two types of relationships between market mechanisms and customary institutions: (1) market mechanisms that replace customary institutions in the case of Axi village, and (2) market mechanisms that are embedded within customary institutions in Xiareer village. This allows contrast of the impacts of differing approaches on livelihoods, livestock production, and wealth differentiation among pastoral households. We found that there is a higher level of livestock mortality, lower livestock productivity, and higher livestock production cost in Axi Village compared to Xiareer Village. In addition, household asset levels are higher and there is less income differentiation in Xiareer Village. It is concluded that embedding market mechanisms within customary institutions has had notable benefits for the herders of Xiareer Village, because it is a better fit to the coupled pastoral social-ecological system. Based on these findings, we argue that in pastoral communities where the rangeland transfer system for contracted grazing land has not yet been implemented, it is critical to reconsider China’s current policy approach to pay greater attention to the innovative management systems being developed in local regions. Instead of considering market-based approaches as oppositional to traditional institutions, options that derive from the interaction of market-based and customary institutions should be considered.
New particle formation (NPF) and its subsequent growth plays a key role in air quality and climate change at regional and global scales. Especially under complex air pollution in China, nucleation and growth can be highly efficient, claimed to be a main source of cloud condensation nuclei (CCN) and an important cause of secondary aerosol pollution. Currently, the mechanism of particle formation and growth as well as its environmental effects are still poorly understood. Thereby, fully understanding of the atmospheric nucleation and subsequent growth still presents a big challenge to atmospheric chemistry researches. This study reviews the current results from studies on mechanisms and environmental effects of atmospheric nucleation and growth. We summarize that traditional nucleation theories such as binary nucleation of H2SO4-H2O, ternary nucleation of H2SO4-NH3-H2O, ion-induced nucleation are not capable in explaining new particle formation under complex air pollution, while newly proposed mechanisms such as organic acids and amine induced nucleation were not verified because of technique limitation. We propose that the future researches should focus on identifying the key chemical precursor response for driving nucleation and initial and subsequent growth, and understand the physical and chemical processing of new particle formation and growth. In particularly, application and development of novel techniques, such as APi-TOF-CIMS, PSM, Nano-HTDMA in new particle formation study is very important. Also, future researches should establish whole process tracking on new particle formation, from precursor, nucleation, growth till the environmental effects, by integrating field observation, chamber simulation, and modelling. Currently, the mechanism of highly efficient nucleation and rapid growth taking place under complex air pollution in China is urgently needed to be in-depth studied in order to improve our understanding of regional haze formation. This could be helpful to understand the similarity and difference in the nucleation mechanism between clean and polluted atmospheric environments.
New particle formation (NPF) and its subsequent growth plays a key role in air quality and climate change at regional and global scales. Especially under complex air pollution in China, nucleation and growth can be highly efficient, claimed to be a main source of cloud condensation nuclei (CCN) and an important cause of secondary aerosol pollution. Currently, the mechanism of particle formation and growth as well as its environmental effects are still poorly understood. Thereby, fully understanding of the atmospheric nucleation and subsequent growth still presents a big challenge to atmospheric chemistry researches. This study reviews the current results from studies on mechanisms and environmental effects of atmospheric nucleation and growth. We summarize that traditional nucleation theories such as binary nucleation of H2SO4-H2O, ternary nucleation of H2SO4-NH3-H2O, ion-induced nucleation are not capable in explaining new particle formation under complex air pollution, while newly proposed mechanisms such as organic acids and amine induced nucleation were not verified because of technique limitation. We propose that the future researches should focus on identifying the key chemical precursor response for driving nucleation and initial and subsequent growth, and understand the physical and chemical processing of new particle formation and growth. In particularly, application and development of novel techniques, such as APi-TOF-CIMS, PSM, Nano-HTDMA in new particle formation study is very important. Also, future researches should establish whole process tracking on new particle formation, from precursor, nucleation, growth till the environmental effects, by integrating field observation, chamber simulation, and modelling. Currently, the mechanism of highly efficient nucleation and rapid growth taking place under complex air pollution in China is urgently needed to be in-depth studied in order to improve our understanding of regional haze formation. This could be helpful to understand the similarity and difference in the nucleation mechanism between clean and polluted atmospheric environments.