科研成果 by Year: 2014

2014
Gao W, Ma S. Advanced Video Coding Systems. Springer; 2014. 访问链接
Liu Z, Huang Y. Advantages of proteins being disordered. Protein Science. 2014;(5):539-550.
Robinson JR, Fan XY, Yadav J, Carroll PJ, Wooten AJ, Pericas MA, Schelter EJ, Walsh PJ. Air- and Water-Tolerant Rare Earth Guanidinium BINOLate Complexes as Practical Precatalysts in Multifunctional Asymmetric Catalysis. Journal of the American Chemical SocietyJournal of the American Chemical SocietyJournal of the American Chemical Society. 2014;136:8034-8041.Abstract
Shibasaki's REMB catalysts (REMB; RE = Sc, Y, La-Lu; M = Li, Na, K; B = 1,1'-bi-2-naphtholate; RE/M/B = 1/3/3) are among the most enantioselective asymmetric catalysts across a broad range of mechanistically diverse reactions. However, their widespread use has been hampered by the challenges associated with their synthesis and manipulation. We report here the self-assembly of novel hydrogen-bonded rare earth metal BINOLate complexes that serve as bench-stable precatalysts for Shibasaki's REMB catalysts. Incorporation of hydrogen-bonded guanidinium cations in the secondary coordination sphere leads to unique properties, most notably, improved stability toward moisture in solution and in the solid state. We have exploited these properties to develop straightforward, high-yielding, and scalable open-air syntheses that provide rapid access to crystalline, nonhygroscopic complexes from inexpensive hydrated RE starting materials. These compounds can be used as precatalysts for Shibasaki's REMB frameworks, where we have demonstrated that our system performs with comparable or improved levels of stereoselectivity in several mechanistically diverse reactions including Michael additions, aza-Michael additions, and direct Aldol reactions.
Wu J, Martin JW, Zhai ZH, Lu KD, Li L, Fang XK, Jin HB, Hu JX, Zhang JB. Airborne Trifluoroacetic Acid and Its Fraction from the Degradation of HFC-134a in Beijing, China. Environmental Science & TechnologyEnvironmental Science & Technology. 2014;48:3675-3681.Abstract
Trifluoroacetic acid (TFA) has been attracting increasing attention worldwide because of its increased environmental concentrations and high aquatic toxicity. Atmospheric deposition is the major source of aquatic TFA, but only a few studies have reported either air concentrations or deposition fluxes for TFA. This is the first study to report the atmospheric concentrations of TFA in China, where an annular denuder and filter pack collection system were deployed at a highly urbanized site in Beijing. In total, 14-4 air samples were collected over the course of 1 year (from May 2012 to April 2013) and analyzed directly using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) or following derivatization by gas chromatography-mass spectrometry (GC-MS). The annual mean atmospheric concentration of TFA was 1580 +/- 558 pg/m(3), higher than the previously reported annual mean levels in Germany and Canada. For the first time, it was demonstrated that maximum concentrations of TFA were frequently observed in the afternoon, following a diurnal cycle and suggesting that a major source of airborne TFA is likely degradation of volatile precursors. Using a deposition model, the annual TFA deposition flux was estimated to be 619 +/- 264 mu g m(-2) year(-1). Nevertheless, a box model estimated that the TFA deposition flux from the degradation of HFC-134a contributed only 14% (6-33%) to the total TFA deposition flux in Beijing. Source analysis is quite important for future TFA risk predictions; therefore, future research should focus on identifying additional sources.
Wu J, Martin JW, Zhai Z, Lu K, Li L, Fang X, Jin H, Hu J, Zhang J. Airborne trifluoroacetic acid and its fraction from the degradation of HFC-134a in Beijing, China. Environ. Sci. Technol. [Internet]. 2014;48(7):3675-3681. 访问链接Abstract
Trifluoroacetic acid (TFA) has been attracting increasing attention worldwide because of its increased environmental concentrations and high aquatic toxicity. Atmospheric deposition is the major source of aquatic TFA, but only a few studies have reported either air concentrations or deposition fluxes for TFA. This is the first study to report the atmospheric concentrations of TFA in China, where an annular denuder and filter pack collection system were deployed at a highly urbanized site in Beijing. In total, 144 air samples were collected over the course of 1 year (from May 2012 to April 2013) and analyzed directly using high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) or following derivatization by gas chromatography–mass spectrometry (GC–MS). The annual mean atmospheric concentration of TFA was 1580 ± 558 pg/m3, higher than the previously reported annual mean levels in Germany and Canada. For the first time, it was demonstrated that maximum concentrations of TFA were frequently observed in the afternoon, following a diurnal cycle and suggesting that a major source of airborne TFA is likely degradation of volatile precursors. Using a deposition model, the annual TFA deposition flux was estimated to be 619 ± 264 μg m–2 year–1. Nevertheless, a box model estimated that the TFA deposition flux from the degradation of HFC-134a contributed only 14% (6–33%) to the total TFA deposition flux in Beijing. Source analysis is quite important for future TFA risk predictions; therefore, future research should focus on identifying additional sources.
Wu J, Martin JW, Zhai Z, Lu K, Li L, Fang X, Jin H, Hu J, Zhang J. Airborne trifluoroacetic acid and its fraction from the degradation of HFC-134a in Beijing, China. Environ Sci TechnolEnviron Sci Technol. 2014;48:3675-81.Abstract
Trifluoroacetic acid (TFA) has been attracting increasing attention worldwide because of its increased environmental concentrations and high aquatic toxicity. Atmospheric deposition is the major source of aquatic TFA, but only a few studies have reported either air concentrations or deposition fluxes for TFA. This is the first study to report the atmospheric concentrations of TFA in China, where an annular denuder and filter pack collection system were deployed at a highly urbanized site in Beijing. In total, 144 air samples were collected over the course of 1 year (from May 2012 to April 2013) and analyzed directly using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) or following derivatization by gas chromatography-mass spectrometry (GC-MS). The annual mean atmospheric concentration of TFA was 1580 +/- 558 pg/m(3), higher than the previously reported annual mean levels in Germany and Canada. For the first time, it was demonstrated that maximum concentrations of TFA were frequently observed in the afternoon, following a diurnal cycle and suggesting that a major source of airborne TFA is likely degradation of volatile precursors. Using a deposition model, the annual TFA deposition flux was estimated to be 619 +/- 264 mug m(-2) year(-1). Nevertheless, a box model estimated that the TFA deposition flux from the degradation of HFC-134a contributed only 14% (6-33%) to the total TFA deposition flux in Beijing. Source analysis is quite important for future TFA risk predictions; therefore, future research should focus on identifying additional sources.
Liu S, Yang S, Tang Z, Jiang Q, Liu C, Wang M, Chen KJ. Al2O3/AlN/GaN MOS-Channel-HEMTs With an AlN Interfacial Layer. IEEE ELECTRON DEVICE LETTERS. 2014;35:723-725.Abstract
We report a high-performance normally-off Al2O3/AlN/GaN MOS-channel-high electron mobility transistor (MOSC-HEMT) featuring a monocrystalline AlN interfacial layer inserted between the amorphous Al2O3 gate dielectric and the GaN channel. The AlN interfacial layer effectively blocks oxygen from the GaN surface and prevents the formation of detrimental Ga-O bonds. Frequency-dispersion in C-V characteristics and threshold voltage hysteresis are effectively suppressed, owing to improved interface quality. The new MOSC-HEMTs exhibit a maximum drain current of 660 mA/mm, a field-effect mobility of 165 cm(2)/V . s, a high ON/OFF drain current ratio of similar to 10(10), and low dynamic ON-resistance degradation.
Chen J, Li Z, Gong Q. All-optical Control of surface plasmon polaritons based on metal slit structures. Chinese Journal of Quantum Electronics. 2014;31(4):428-432.
Liang K, Du W, Lu J, Li F, Yang L, Xue Y, Hille B, Chen L. Alterations of the Ca2+ signaling pathway in pancreatic beta-cells isolated from db/db mice. Protein & Cell. 2014.
Hu Y, Li Q, Lee B, Jun Y-S*. Aluminum Affects Heterogeneous Fe(III) (Hydr)oxide Nucleation, Growth, and Ostwald Ripening. Environmental Science & Technology [Internet]. 2014;48:299-306. LinkAbstract
Heterogeneous coprecipitation of iron and aluminum oxides is an important process for pollutant immobilization and removal in natural and engineered aqueous environments. Here, using a synchrotron-based small-angle X-ray scattering technique, we studied heterogeneous nucleation and growth of Fe(III) (hydr)oxide on quartz under conditions found in acid mine drainage (at pH = 3.7 ± 0.2, [Fe3+] = 10–4 M) with different initial aqueous Al/Fe ratios (0:1, 1:1, and 5:1). Interestingly, although the atomic ratios of Al/Fe in the newly formed Fe(III) (hydr)oxide precipitates were less than 1%, the in situ particle size and volume evolutions of the precipitates on quartz were significantly influenced by aqueous Al/Fe ratios. At the end of the 3 h experiments, with aqueous Al/Fe ratios of 0:1, 1:1, and 5:1, the average radii of gyration of particles on quartz were 5.7 ± 0.3, 4.6 ± 0.1, and 3.7 ± 0.3 nm, respectively, and the ratio of total particle volumes on quartz was 1.7:3.4:1.0. The Fe(III) (hydr)oxide precipitates were poorly crystallized, and were positively charged in all solutions. In the presence of Al3+, Al3+ adsorption onto quartz changed the surface charge of quartz from negative to positive, which caused the slower heterogeneous growth of Fe(III) (hydr)oxide on quartz. Furthermore, Al affected the amount of water included in the Fe(III) (hydr)oxides, which can influence their adsorption capacity. This study yielded important information usable for pollutant removal not only in natural environments, but also in engineered water treatment processes.
Shen GF, Yuan SY, Xie YN, Xia SJ, Li L, Yao YK, Qiao YZ, Zhang J, Zhao QY, Ding AJ, et al. Ambient levels and temporal variations of PM2.5 and PM10 at a residential site in the mega-city, Nanjing, in the western Yangtze River Delta, China. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering [Internet]. 2014;49:171-178. 访问链接
Cheng Y*, He K*, Duan F, Du Z, Zheng M*, Ma Y. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications. Science of The Total Environment [Internet]. 2014;468:1103 - 1111. LINK
Rakheja S, Wu Y, Wang H, Palacios T, Avouris P, Antoniadis DA. An Ambipolar Virtual-Source-Based Charge-Current Compact Model for Nanoscale Graphene Transistors. Ieee Transactions on Nanotechnology [Internet]. 2014;13:1005-1013. 访问链接
Yang Y, Shan J, Zhang J, Zhang X, Xie S, Liu Y. Ammonia- and methane-oxidizing microorganisms in high-altitude wetland sediments and adjacent agricultural soils. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2014;98:10197-10209.Abstract
Ammonia oxidation is known to be carried out by ammonia-oxidizing bacteria (AOB) and archaea (AOA), while methanotrophs (methane-oxidizing bacteria (MOB)) play an important role in mitigating methane emissions from the environment. However, the difference of AOA, AOB, and MOB distribution in wetland sediment and adjacent upland soil remains unclear. The present study investigated the abundances and community structures of AOA, AOB, and MOB in sediments of a high-altitude freshwater wetland in Yunnan Province (China) and adjacent agricultural soils. Variations of AOA, AOB, and MOB community sizes and structures were found in water lily-vegetated and Acorus calamus-vegetated sediments and agricultural soils (unflooded rice soil, cabbage soil, and garlic soil and flooded rice soil). AOB community size was higher than AOA in agricultural soils and lily-vegetated sediment, but lower in A. calamus-vegetated sediment. MOB showed a much higher abundance than AOA and AOB. Flooded rice soil had the largest AOA, AOB, and MOB community sizes. Principal coordinate analyses and Jackknife Environment Clusters analyses suggested that unflooded and flooded rice soils had relatively similar AOA, AOB, and MOB structures. Cabbage soil and A. calamus-vegetated sediment had relatively similar AOA and AOB structures, but their MOB structures showed a large difference. Nitrososphaera-like microorganisms were the predominant AOA species in garlic soil but were present with a low abundance in unflooded rice soil and cabbage soil. Nitrosospira-like AOB were dominant in wetland sediments and agricultural soils. Type I MOB Methylocaldum and type II MOB Methylocystis were dominant in wetland sediments and agricultural soils. Moreover, Pearson's correlation analysis indicated that AOA Shannon diversity was positively correlated with the ratio of organic carbon to nitrogen (p < 0.05). This work could provide some new insights toward ammonia and methane oxidation in soil and wetland sediment ecosystems.
Han M, Li Z, Sun X, Zhang H. Analysis of an in-plane electromagnetic energy harvester with integrated magnet array. Sensors and Actuators A: Physical. 2014;219:38-46.
Liang D, Jia J, Wu X, Miao J, Wang A. Analysis of learners' behaviors and learning outcomes in a massive open online course. Knowledge Management and E-Learning [Internet]. 2014;6:281-298. 访问链接
Lin L, Lu J, Shao S. Analysis of the time reversible Born-Oppenheimer molecular dynamics. Entropy [Internet]. 2014;16:110-137. 访问链接Abstract
We analyze the time reversible Born-Oppenheimer molecular dynamics (TRBOMD) scheme, which preserves the time reversibility of the Born-Oppenheimer molecular dynamics even with non-convergent self-consistent field iteration. In the linear response regime, we derive the stability condition, as well as the accuracy of TRBOMD for computing physical properties, such as the phonon frequency obtained from the molecular dynamics simulation. We connect and compare TRBOMD with Car-Parrinello molecular dynamics in terms of accuracy and stability. We further discuss the accuracy of TRBOMD beyond the linear response regime for non-equilibrium dynamics of nuclei. Our results are demonstrated through numerical experiments using a simplified one-dimensional model for Kohn-Sham density functional theory. 
Liu Y, Wang F, Kang C, Gao Y, Lu Y. Analyzing relatedness by toponym co-occurrences on web pages. Transactions in GIS [Internet]. 2014;18:89-107. 访问链接
Zhu X, Ge X, Li N, Wu L-F, Luo C, Ouyang Q, Tu Y, Chen G. Angle sensing in magnetotaxis of Magnetospirillum magneticum AMB-1. Integrative Biology (United Kingdom). 2014;(7):706-713.
Zhu X, Ge X, Li N, Wu L-F, Luo C, Ouyang Q, Tu Y, Chen G. Angle sensing in magnetotaxis of Magnetospirillum magneticum AMB-1. Integrative Biology (United Kingdom). 2014;(7):706-713.

Pages