Comprehensive and joint applications of GIS and chemometric approach were applied in identification and spatial patterns of coastal water pollution sources with a large data set (5 years (2000-2004), 17 parameters) obtained through coastal water monitoring of Southern Water Control Zone in Hong Kong. According to cluster analysis the pollution degree was significantly different between September-next May (the 1st period) and June-August (the 2nd period). Based on these results, four potential pollution sources, such as organic/eutrophication pollution, natural pollution, mineral/anthropic pollution and fecal pollution were identified by factor analysis/principal component analysis. Then the factor scores of each monitoring site were analyzed using inverse distance weighting method, and the results indicated degree of the influence by various potential pollution sources differed among the monitoring sites. This study indicated that hybrid approach was useful and effective for identification of coastal water pollution source and spatial patterns.
The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The oxygen uptake rate (OUR) was used to characterize the biological activity of immobilized activated sludge. Three kinds of PVA-immobilized particles of activated sludge, that is, PVA-boric acid beads, PVA-sodium nitrate beads and PVA-orthophosphate beads were prepared, and their biological activity was compared by measuring the OUR value. The bioactivity of both autotrophic and heterotrophic microorganisms of activated sludge was determined using different synthetic wastewater media (containing 250 mg/L COD and 25 mg/L NH4(+)-N). The experimental results showed that the bioactivity and stability of the three kinds of immobilized activated sludge was greatly improved after activation. With respect of the bioactivity and the mechanical stability, the PVA-orthophosphate method may be a promising and economical technique for microbial immobilization.
The organic and inorganic species in total suspended particulates (TSP) collected from June to December in 1998 in Hong Kong were identified by gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS) to investigate the sources of Hong Kong aerosols and the mechanisms that control the chemical compositions and variations in the atmosphere. These samples were classified according to the climate: wet, dry under the influence of southerly winds from the sea (Dry-S) and dry under the influence of northerly winds from the continent (Dry-N). There were significant increases of materials from crustal, biogenic and pollution sources in the Dry-N period by a factor of 5, 4, and 2, respectively. Since the crustal tracers (e.g., Al, Fe) could be from coal flyash, the estimate of crustal material in the Dry-N period may include some materials from pollution source. Therefore, a positive correlation between crustal and pollution elements was observed. From the analysis of solvent-extractable organics (SEOC), microbial and meat cooking sources showed slight increase (1.2-fold). Higher levels of plant wax materials in the Dry-N period were probably due to the higher wind speed during the winter monsoon. The percentage of crustal material in TSP was 47% in the Dry-N period, and only 22% in the wet season and the Dry-S period. Plant wax materials (biogenic source) had a higher percentage in the Dry-N period (39% of SEOC) while microbial and meat cooking sources accounted for 49% of SEOC in the wet season. This study revealed that wind direction and precipitation had a significant influence not only on the concentrations but also on the chemical compositions and sources of Hong Kong aerosols.
Lake areas in Chinese urban fringes are under increasing pressure of urbanization. Consequently, the conflict between rapid urban sprawl and the maintenance of water bodies in such areas urgently needs to be addressed. An integrated GIS-based analysis system (IGAS) for supporting land-use management of lake areas in urban fringes was developed in this paper. The IGAS consists of modules of land-use suitability assessment and change/demand analysis, and land evaluation and allocation. Multicriteria analysis and system dynamics techniques are used to assess land-use suitability and forecast potential land-use variation, respectively. Cost approximation and hypothetical development methods are used to evaluate land resource and market values, respectively. A case study implementing the system was performed on the Hanyang Lake area in the urban fringe of Wuhan City, central China, which is under significant urbanization pressure. Five categories of suitability were investigated by analyzing 11 criteria and related GIS data. Two scenarios for potential land-use changes from 2006 to 2020 were predicted, based on a systematic analysis and system dynamics modeling, and a hierarchical land-use structure was designed for the conservation of aquatic ecosystems. The IGAS may help local authorities better understand and address the complex land-use system, and develop improved land-use management strategies that better balance urban expansion and ecological conservation. (c) 2007 Elsevier B.V. All rights reserved.