Chen J, Wu X, Qu T. Early Reflections Based Speech Enhancement, in 2021 4th International Conference on Information Communication and Signal Processing (ICICSP). ShangHai, China; 2021:183-187.
With frame-based cameras, capturing fast-moving scenes without suffering from blur often comes at the cost of low SNR and low contrast. Worse still, the photometric constancy that enhancement techniques heavily relied on is fragile for frames with short exposure. Event cameras can record brightness changes at an extremely high temporal resolution. For low-light videos, event data are not only suitable to help capture temporal correspondences but also provide alternative observations in the form of intensity ratios between consecutive frames and exposure-invariant information. Motivated by this, we propose a low-light video enhancement method with hybrid inputs of events and frames. Specifically, a neural network is trained to establish spatiotemporal coherence between visual signals with different modalities and resolutions by constructing correlation volume across space and time. Experimental results on synthetic and real data demonstrate the superiority of the proposed method compared to the state-of-the-art methods.
Fovea, located in the centre of the retina, is specialized for high-acuity vision. Mimicking the sampling mechanism of the fovea, a retina-inspired camera, named spiking camera, is developed to record the external information with a sampling rate of 40,000 Hz, and outputs asynchronous binary spike streams. Although the temporal resolution of visual information is improved, how to reconstruct the scenes is still a challenging problem. In this paper, we present a novel high-speed image reconstruction model through the short-term plasticity (STP) mechanism of the brain. We derive the relationship between postsynaptic potential regulated by STP and the firing frequency of each pixel. By setting up the STP model at each pixel of the spiking camera, we can infer the scene radiance with the temporal regularity of the spike stream. Moreover, we show that STP can be used to distinguish the static and motion areas and further enhance the reconstruction results. The experimental results show that our methods achieve state-of-the-art performance in both image quality and computing time.