Integration between electronics and biology is often facilitated by iontronics, where ion migration in aqueous media governs sensing and memory. However, the Debye screening effect limits electric fields to the Debye length, the distance over which mobile ions screen electrostatic interactions, necessitating external voltages that constrain the operation speed and device design. Here we report a high-speed in-memory sensor based on vanadium dioxide (VO2) that operates without an external voltage by leveraging built-in electric fields within the Debye length. When VO2 contacts a low-work-function metal (for example, indium) in a salt solution, electrochemical reactions generate indium ions that migrate into the VO2 surface under the native electric field, inducing a surface insulator-to-metal phase transition of VO2. The VO2 conductance increase rate reflects the salt concentration, enabling in-memory sensing, or memsensing of the solution. The memsensor mimics Caenorhabditis elegans chemosensory plasticity to guide a miniature boat for adaptive chemotaxis, illustrating low-power aquatic neurorobotics with fewer memory units.
Beryllium isotopes (stable 9Be and cosmogenic meteoric 10Be) enter the oceans through distinct pathways – i.e., from the continents and the atmosphere respectively – and display non-conservative behaviour in seawater. This isotope system has served as a powerful tool for quantifying a variety of processes, including geomagnetism, sedimentation, continental input, and ocean circulation. However, processes at land–ocean boundaries and within the ocean interior may either amplify or buffer the seawater isotope response to environmental changes. In the last decade, substantial effort has been invested in understanding external sources and internal cycling of Be isotopes, offering an excellent opportunity to revisit their modern oceanic cycle. Here, we investigate the controls on the modern oceanic cycling of Be isotopes using a three-dimensional ocean model, constrained by observational data on input fluxes and water-column distributions of 9Be and 10Be. In addition to modelling the previously known controls, we highlight the key role of marine benthic fluxes and scavenging onto particulate organic matter and opal in determining the mass balance and spatial distribution of Be isotopes. Inter-basin Be transport by the circulation is less important than external inputs at continent/atmosphere–ocean boundaries, except in the South Pacific. Therefore, the distribution of seawater 10Be/9Be ratios largely reflects that of the external inputs in most basins in the modern ocean. Finally, we apply our data-constrained mechanistic model to test the sensitivity of basin-wide 10Be/9Be ratios to changes of external sources and internal cycling. This analysis shows that seawater 10Be/9Be ratios are to some extent buffered against changes in continental denudation. For example, a 50 % decrease in denudation rates results in a 13–48 % increase in ocean-wide 10Be/9Be ratios. Moreover, the interplay between particle scavenging and ocean circulation can cause divergent responses in 10Be/9Be ratios in different basins. Weaker scavenging (e.g., 50 % decrease in intensity) would increase the homogenising effect of ocean circulation, making North Atlantic and North Pacific 10Be/9Be ratios converge (∼20 % change in isotope ratios). The mechanistic understanding developed from this Be cycling model provides important insights into the various applications of marine Be isotopes, and offers additional tools to assess the causes of spatio-temporal Be isotope variations. We also identify the key oceanic processes that require further constraints to achieve a complete understanding of Be cycling in the modern ocean and back through time.
Using the census data from 2000-2015 and a pseudo-event study design, we estimate the motherhood penalty in China and explore its association with declining fertility. We find that one-third of working women leave their jobs in the year when they give birth, and the penalty persists for over eight years. The motherhood penalty increases significantly across almost all provinces during this period, and provinces with larger increases in the penalty experience greater declines in fertility rates. Using a mover-based design, we find that the rising motherhood penalty has caused a significant decline in the total fertility rate.
The poor endurance of hafnium oxide (HfO2)-based ferroelectric field-effect transistors (FeFETs) limits their applications. From a novel perspective of ferroelectric domain engineering, we propose and fabricate a high endurance HfO2-based FeFET with monolayer graphene (GR) inserted in the gate oxide for the first time. The introduction of GR between the ferroelectric (FE) layer and the interfacial layer (IL) increases the number of domains in the ferroelectric (FE) layer and reduces the electric field of the IL. Meanwhile, the low density of states (DOS) of monolayer GR suppresses the charge injection to further optimize the endurance. Experimental results show that the endurance of the GR-intercalated FeFET (GR-FeFET) exceeds 108 cycles, which is more than 2 orders of magnitude higher than that of the conventional FeFET. The gate leakage is also effectively suppressed by the GR layer. This work opens a new avenue for improvement of the endurance of FeFETs and demonstrates GR-FeFETs as potential candidates for next-generation embedded memory applications.
WeproposeanODEapproachtosolvingmultiplechoicepolynomialprogram- ming (MCPP) after assuming that the optimum point can be approximated by the ex- pected value of so-called thermal equilibrium as usually did in simulated annealing. The explicit form of the feasible region and the affine property of the objective function are both fully exploited in transforming an MCPP problem into an ODE system. We also show theoretically that a local optimum of the former can be obtained from an equilib- rium point of the latter. Numerical experiments on two typical combinatorial problems, MAX-k-CUT and the calculation of star discrepancy, demonstrate the validity of the ODE approach, and the resulting approximate solutions are of comparable quality to those obtained by the state-of-the-art heuristic algorithms but with much less cost. When compared with the numerical results obtained by using Gurobi to solve MCPP directly, our ODE approach is able to produce approximate solutions of better quality in most instances. This paper also serves as the first attempt to use a continuous algorithm for approximating the star discrepancy.
Recent advances on time series forecasting mainly focus on improving the forecasting models themselves. However, when the time series data suffer from potential structural breaks or concept drifts, the forecasting performance might be significantly reduced. In this paper, we introduce a novel approach called Optimal Starting Point Time Series Forecast (OSP-TSP) for optimal forecasting, which can be combined with existing time series forecasting models. By adjusting the sequence length via leveraging the XGBoost and LightGBM models, the proposed approach can determine the optimal starting point (OSP) of the time series and then enhance the prediction performances of the base forecasting models. To illustrate the effectiveness of the proposed approach, comprehensive empirical analysis have been conducted on the M4 dataset and other real world datasets. Empirical results indicate that predictions based on the OSP-TSP approach consistently outperform those using the complete time series dataset. Moreover, comparison results reveals that combining our approach with existing forecasting models can achieve better prediction accuracy, which also reflect the advantages of the proposed approach.
This study examines how overconfidence shapes individuals' preference for redistribution. We contend that overconfidence inflates individuals' income expectations, which reduces the perceived benefits of redistribution for these individuals and thereby weakens their preference for such policies. Using data from the 2014 China Family Panel Studies, we find that overconfident individuals are more confident in their future life and exhibit less concerns for economic inequality, healthcare, and social security issues—key proxies for preference for redistribution. These results are more pronounced among less wealthy individuals. In addition, our results remain unchanged after controlling for individuals' trust in government and risk preference. These findings highlight the role of biased belief in shaping individuals’ attitude toward redistribution, offering new insights for discussions on redistributive policies.
Mineral crystallization is central to myriad natural processes from the formation of snowflakes to stalagmites, but the molecularscale mechanisms are often far more complex than models reflect. Feedbacks between the hydro-, bio-, and geo-spheres drive complex crystallization processes that challenge our ability to observe and quantify them, motivating an expansion of crystallization theories. In this article, we discuss how the driving forces and timescales of nucleation are influenced by factors ranging from simple geometric confinement to distinct interfacial solution structures involving solvent organization, electrical double layers, and surface charging effects. Taken together, these ubiquitous natural phenomena can preserve metastable intermediates, drive precipitation of undersaturated phases, and modulate crystallization in time and space.