A series of PDI dimers featuring various arylene linkers are developed as electron acceptors in organic solar cells. Using P3HT as the donor, power conversion efficiency of up to 2.3% is achieved with two PDI dimers having spirobifluorene linkers. The results indicate that such non-planar, three-dimensional structures effectively suppress self-aggregation and crystallization of the PDI units, which is favourable for their solar cell performance.
In this review, a non-standard application of high-resolution transmission electron microscope (HRTEM), namely the creation of so-called NanoLaboratory for the nanomaterial property studies within its pole piece, is presented. The most modern research trends with respect to nanotube, graphene and nanowire, as well as electrical, mechanical and electromechanical properties are demonstrated. In addition, the unique possibilities of modeling real technological processes inside HRTEM, for example, the performance of Li-ion batteries, are illustrated. The contribution particularly highlights the recent research endeavors of our Tsukuba group in line with all the above-mentioned directions of in situ TEM.