Concentration and source rate of precursor vapors participating in particle formation and subsequent growth were investigated during the Pearl River Delta intensive campaign (PRD2004, October 2004) in southeastern China. Four new particle formation event days and a typical non-event day were selected for our analysis. Atmospheric sulphuric acid, the important precursor vapor in nucleation and growth, were simulated with a pseudo steady-state model based on the measurements of SO2, NOx, O-3; CO, non-methane hydrocarbon (NMHC) and ambient particle number concentrations as well as modeled photolysis frequencies obtained from measurements. The maximum midday sulphuric acid concentrations vary from 4.53 x 10(7) to 2.17 x 10(8) molecules cm(-3), the corresponding source rate via reaction of OH and SO2 range between 2.37 x 10(6) and 1.16 x 10(7) molecules cm(-3) s(-1). Nucleation mode growth rate was derived from size spectral evolution during the events to be 6:8-13.8 nm h(-1). Based on the growth rate, concentration of the vapors participating in subsequent growth were estimated to vary from 1.32 x 10(8) to 2.80 x 10(8) molecules cm(-3) with corresponding source rate between 7.26 x 10(6) and 1.64 x 10(7) molecules cm(-3) s(-1). Our results show the degree of pollution is larger in PRD. Sulphuric acid concentrations are fairly high and have a close correlation with new particle formation events. Budget analysis shows that sulphuric acid alone is not enough for required growth; other nonvolatile vapors are needed. However, sulphuric acid plays an important role in growth; the contribution of sulphuric acid to growth in PRD is 12.4%-65.2%.
This study was to explore a bibliometric approach to quantitatively assessing current research trends on atmospheric aerosol, using the related literature in the Science Citation Index (SCI) database from 1991 to 2006. Articles were concentrated on the analysis by scientific output, research performances by individuals, institutes and countries, and trends by the frequency of keywords used. Over the years, there had been a notably growth trend in research outputs, along with more participation and collaboration of institutes and countries. Research collaborative papers shifted from national inter-institutional to international collaboration. The decreasing share of world total and independent articles by the seven major industrialized countries (G7) was examined. Aerosol research in environmental and chemical related fields other than in medical fields was the mainstream of current years. Finally, author keywords, words in title and keywords plus were analyzed contrastively, with research trends and recent hotspots provided.
A hybrid molecular dynamics (MD)/kinetic Monte Carlo (KMC) model is developed for atomistic modeling of fluorine ion implantation and diffusion in AlGaN/GaN heterostructures. The MD simulation reveals the F distribution profiles and the corresponding defect profiles, and most importantly, the potential energies of fluorine ions in the III-nitride material system. Using the results from the MD simulation, the diffusion process is simulated with KMC method, and the modeling results are validated by the secondary-ion-mass-spectrum (SIMS) measurement. The surface effect on the fluorine's stability and its improvement by passivation are also successfully modeled.
We use an electrostatic model to study the average kinetic energy of ions ejected from the pure Coulomb explosions of methane clusters (CA4)n (light atom A=H and D). It is found that the ratio of the average kinetic energy of the ions to their initial average electrostatic potential energy is irrelevant to the cluster size. This finding implies that as long as the ratio is given, the average kinetic energies of the ions can be simply estimated from their initial average electrostatic potential energies, rather than from the time-consuming simulations. The ratios for the different charge states of carbon ions are presented.