科研成果

2020
Duan J, Ji H, Zhao X, Tian S, Liu X, Liu W, Zhao D. Immobilization of U(VI) by stabilized iron sulfide nanoparticles: Water chemistry effects, mechanisms, and long-term stability. Chemical Engineering Journal [Internet]. 2020;393:124692. 访问链接Abstract
Carboxymethyl cellulose stabilized iron sulfide (CMC-FeS) nanoparticles have been shown promising for reductive immobilization of U(VI) in water and soil. This work aimed to fill some critical knowledge gaps on the effects of the stabilizer and water chemistry, reaction mechanisms, and long-term stability of stabilized uranium. The optimal CMC-to-FeS molar ratio was determined to be 0.0010. CMC-FeS performed effectively over pH 6.0–9.0, with the best removal being at pH 7.0 and 8.0. The retarded first-order model adequately interpreted the kinetic data, representing a mechanistically sounder model for heterogeneous reactants of decaying reactivity. The presence of Ca2+ (1 mM) or bicarbonate (1 mM) lowered the initial rate constant by a factor of 1.6 and 9.5, respectively, while 1 mM of Na+ showed negligible effect. Humic acid at 1.0 mg/L (as total organic carbon) doubled the removal rate, but inhibited the removal at elevated concentrations (≥5.0 mg/L). Fourier transform infrared spectroscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, and extraction studies indicated that reductive conversion of UO22+ to UO2(s) was the primary reaction mechanism, accounting for  90% of U removal at pH 7.0. S2− and S22− were the primary electron sources, whereas sorbed and structural Fe(II) acted as supplementary electron donors. The immobilized U remained stable under anoxic conditions after 180 days of aging, while  26% immobilized U was remobilized when exposed to air for 180 days. The long-term stability is attributed to the protective reduction potential of CMC-FeS, the formation of uraninite and associated structural resistance to oxidation, and the high affinity of FeS oxidation products toward U(VI).
Tan T, Guo S, Wu Z, He L, HUANG X, Hu M. Impact of aging process on the properties and climate effects of atmospheric black carbon aerosols. Kexue Tongbao/Chinese Science BulletinKexue Tongbao/Chinese Science Bulletin. 2020;65.
Huang K, Zhao H, Huang J, Wang J, Findlay C. The impact of climate change on the labor allocation: Empirical evidence from China. Journal of Environmental Economics and Management. 2020;104:102376.
Li H, Tian Y, Liu W, Long Y, Ye J, Li B, Li N, Yan M, Zhu C. Impact of electrokinetic remediation of heavy metal contamination on antibiotic resistance in soil. Chemical Engineering Journal [Internet]. 2020;400:125866. 访问链接Abstract
Electrokinetic remediation is an effective technology for soil contaminated with heavy metals. However, little is known about the fate of antibiotic resistance in the process under heavy metal stress, since antibiotic resistance genes (ARGs) are widely distributed and can be co-selected with heavy metals. This study focused on antibiotic resistant bacteria and ARGs over different remediation periods (1, 2, and 5 days), voltages (0.4 and 0.8 V cm−1), and initial concentrations (250–1,000 mg kg−1 for Cu, and 1,000–3,000 mg kg−1 for Zn). The application of polarity-reversal maintained a suitable pH, eliminating possible negative effects on soil quality. In addition to a decrease in total metals, the speciation was modified as residual forms decreased while reactive forms increased. Compared with anti-oxytetracycline bacteria, anti-sulfamethoxazole bacteria were more resistant to the electric field, which might be ascribed to greater constraints on their resistance enzymes. The presence of heavy metals accelerated the spread of ARGs, with a 2.67-fold increase for tetG, and a 3.86-fold increase for sul1. Among the ARGs studied, tetM and tetW, as well as sul genes were more easily removed than tetC and tetG genes. Finally, a significant correlation was found between ARGs and Cu, consistent with the relatively stronger toxicity of Cu and its high potential to induce the SOS response. This study advances the understanding of how electrokinetics influences antibiotic resistance in soil with heavy metals, which has important implications for the simultaneous control of these pollutants in soil.
Inderwildi O, Zhang C, Wang X, Kraft M. The impact of intelligent cyber-physical systems on the decarbonization of energy. Energy & Environmental Science [Internet]. 2020;13:744–771. 访问链接Abstract
The decarbonisation of energy provision is key to managing global greenhouse gas emissions and hence mitigating climate change. Digital technologies such as big data, machine learning, and the Internet of Things are receiving more and more attention as they can aid the decarbonisation process while requiring limited investments. The orchestration of these novel technologies, so-called cyber-physical systems (CPS), provides further, synergetic effects that increase efficiency of energy provision and industrial production, thereby optimising economic feasibility and environmental impact. This comprehensive review article assesses the current as well as the potential impact of digital technologies within CPS on the decarbonisation of energy systems. Ad hoc calculation for selected applications of CPS and its subsystems estimates not only the economic impact but also the emission reduction potential. This assessment clearly shows that digitalisation of energy systems using CPS completely alters the marginal abatement cost curve (MACC) and creates novel pathways for the transition to a low-carbon energy system. Moreover, the assessment concludes that when CPS are combined with artificial intelligence (AI), decarbonisation could potentially progress at an unforeseeable pace while introducing unpredictable and potentially existential risks. Therefore, the impact of intelligent CPS on systemic resilience and energy security is discussed and policy recommendations are deducted. The assessment shows that the potential benefits clearly outweigh the latent risks as long as these are managed by policy makers.
Guo C, Dai* H, Liu X, Wu Y, Liu X, Liu Y. Impacts of climate change mitigation on agriculture water use: a provincial analysis in China. Geography and Sustainability [Internet]. 2020;1(3):189-199. 访问链接
Li G, Xu J, Li L, Shi Z, Yi H, Chu J, Kardanova E, Li Y, Loyalka P, Rozelle* S. The Impacts of Highly Resourced Vocational Schools on Student Outcomes in China. China & World Economy. 2020:6.
Hong CP, Mueller ND, Burney J, Zhang Y, AghaKouchak A, Moore FC, Qin Y, Tong D, Davis SJ. Impacts of ozone and climate change on California perennial crops. Nature Food. [Internet]. 2020;1(3):66-172. 访问链接
Yin Z, Wang XH, Otté C, Zhou F, Guimberteau M, Polcher J, Peng SS, Piao SL, Li L, Bo Y, et al. Improvement of the irrigation scheme in the ORCHIDEE land surface model and impacts of irrigation on regional water budgets over China. Journal of Advances in Modeling Earth Systems [Internet]. 2020:https://doi.org/10.1029/2019MS001770. 访问链接Abstract
Abstract In China, irrigation is widespread in 40.7% cropland to sustain crop yields. By its action on water cycle, irrigation affects water resources, and local climate. In this study, a new irrigation module, including flood and paddy irrigation technologies, was developed in the ORCHIDEE-CROP land surface model which describes crop phenology and growth in order to estimate irrigation demands over China from 1982 to 2014. Three simulations were performed including NI: no irrigation; IR: with irrigation limited by local water resources; and FI: with irrigation demand fulfilled. Observations and census data were used to validate the simulations. Results showed that the estimated irrigation water withdrawal (W) based on IR and FI scenarios bracket statistical W with fair spatial agreements (r = 0.68 ± 0.07; p < 0.01). Improving irrigation efficiency was found to be the dominant factor leading to the observed W decrease. By comparing simulated total water storage (TWS) with GRACE observations, we found that simulated TWS with irrigation well explained the TWS variation over China. However, our simulation overestimated the seasonality of TWS in the Yangtze River Basin due to ignoring regulation of artificial reservoirs. The observed TWS decrease in the Yellow River Basin caused by groundwater depletion was not totally captured in our simulation, but it can be inferred by combining simulated TWS with census data. Moreover, we demonstrated that land use change tended to drive W locally, but had little effect on total W over China due to water resources limitation.
Son M, Pothanamkandathil V, Yang W, Vrouwenvelder JS, Gorski CA, Logan BE. Improving the thermodynamic energy efficiency of battery electrode deionization using flow-through electrodes. Environmental Science & Technology. 2020;54(6):3628-3635.
Son M, Pothanamkandathil V, Yang W, Vrouwenvelder JS, Gorski CA, Logan BE. Improving the thermodynamic energy efficiency of battery electrode deionization using flow-through electrodes. Environmental science & technology. 2020;54:3628–3635.
Son M, Pothanamkandathil V, Yang W, Vrouwenvelder JS, Gorski CA, Logan BE. Improving the thermodynamic energy efficiency of battery electrode deionization using flow-through electrodes. Environmental Science & Technology. 2020;54:3628–3635.
Wang H, Guan H, Yi H, Seevak E, Manheim R, Boswell M, Rozelle S, Kotb S. Independent reading in rural China’s elementary schools: A mixed-methods analysis. International Journal of Educational Development. 2020;78:102241.
Zhang M, Wu X, Qu T. Individual Distance-Dependent HRTFS Modeling Through A Few Anthropometric Measurements, in International Conference on Acoustics, Speech and Signal Processing (ICASSP) . Barcelona, Spain; 2020:401-405.
Nwanaji-Enwerem JC, Colicino E, Specht AJ, Gao X, Wang C, Vokonas P, Weisskopf MG, Boyer EW, Baccarelli AA, Schwartz J. Individual species and cumulative mixture relationships of 24-hour urine metal concentrations with DNA methylation age variables in older men. Environ Res [Internet]. 2020;186:109573. 访问链接Abstract
{BACKGROUND: Globally, toxic metal exposures are a well-recognized risk factor for many adverse health outcomes. DNA methylation-based measures of biological aging are predictive of disease, but have poorly understood relationships with metal exposures. OBJECTIVE: We performed a pilot study examining the relationships of 24-h urine metal concentrations with three novel DNA methylation-based measures of biological aging: DNAmAge, GrimAge, and PhenoAge. METHODS: We utilized a previously established urine panel of five common metals [arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn), and mercury (Hg)] found in a subset of the elderly US Veterans Affairs Normative Aging Study cohort (N = 48). The measures of DNA methylation-based biological age were calculated using CpG sites on the Illumina HumanMethylation450 BeadChip. Bayesian Kernel Machine Regression (BKMR) was used to determine metals most important to the aging outcomes and the relationship of the cumulative metal mixture with the outcomes. Individual relationships of important metals with the biological aging outcomes were modeled using fully-adjusted linear models controlling for chronological age, renal function, and lifestyle/environmental factors. RESULTS: Mn was selected as important to PhenoAge. A 1 ng/mL increase in urine Mn was associated with a 9.93-year increase in PhenoAge (95%CI: 1.24, 18.61
Sheng B, Schmidt G, Bertram F, Veit P, Wang Y, Wang T, Rong X, Chen Z, Wang P, Bläsing J, et al. Individually resolved luminescence from closely stacked GaN/AlN quantum wells. Photonics Research. 2020;8:610–615.
Hu X, He L, Zhang J, Qiu X, Zhang Y, Mo J, Day DB, Xiang J, Gong J. Inflammatory and oxidative stress responses of healthy adults to changes in personal air pollutant exposure. Environmental PollutionEnvironmental Pollution. 2020;263.
Hu X, He L, Zhang J, Qiu X, Zhang Y, Mo J, Day D, Xiang J, Gong J. Inflammatory and oxidative stress responses of healthy adults to changes in personal air pollutant exposure. Environmental Pollution [Internet]. 2020:114503. 访问链接
Song H, Chen X, Lu K, Zou Q, Tan Z, Fuchs H, Wiedensohler A, Moon DR, Heard DE, Baeza-Romero MT, et al. Influence of aerosol copper on HO2 uptake: a novel parameterized equation. Atmos. Chem. Phys. 2020;20:15835-15850.
He L, Rong H, Wu D, Li M, Wang C, Tong M. Influence of biofilm on the transport and deposition behaviors of nano- and micro-plastic particles in quartz sand. Water Research [Internet]. 2020;178. 访问链接Abstract
Biofilm, community of bacteria ubiquitously present in natural environment, may interact with plastic particles and affect the transport of plastic particles in environment. The significance of biofilm (Escherichia coli) on the transport and deposition behaviors of three different sized plastic particles (0.02 μm NPs, 0.2 μm MP and 2 μm MP) were examined under both 10 mM and 50 mM NaCl solutions by comparing the breakthrough curves and retained profiles of plastic particles in bare sand versus those in biofilm-coated sand. Regardless of ionic strengths, the presence of biofilm increases the deposition of all three sized plastic particles in porous media. Via employing X-ray microtomography imaging (XMT) and Scanning electron microscope (SEM), we find that the presence of biofilm could narrow the flow path especially near to the inlet of the column and increase the surface roughness of porous media (by decreasing DLVO repulsive interaction), which contributes to the enhanced the deposition of plastic particles. Extracellular polymeric substances (EPS) present on the biofilm are found to contribute to the enhanced deposition of plastic particles. Packed column experiments, quartz crystal microbalance with dissipation (QCM-D) as well as parallel plate flow chamber experiments all show that three major components of EPS, proteins, polysaccharide, and humic substances all contribute to the enhanced deposition of plastic particles. O–H and N–H groups present on cell surfaces are highly likely to form hydrogen bond with plastic particles and increase the deposition plastic particles. Elution experiments show that decreasing solution ionic strength could release small portion of plastic particles from both bare and biofilm-coated sand columns especially from the segments near to the column inlet (with slighter lower percentage from biofilm-coated columns based on the total mass of retained plastics). In contrast, increasing flow rate does not obviously detach the plastic particles that already deposited onto porous media. The results of this study clearly show that the presence of biofilm in natural environment could enhance the deposition and decrease the transport of plastic particles. © 2020

Pages