Bhatti P, Mirick DK, Randolph TW, Gong J, Buchanan DT, Zhang JJ, Davis S.
Oxidative DNA damage during night shift work. Occup Environ Med. 2017;74:680-683.
AbstractOBJECTIVES: We previously reported that compared with night sleep, day sleep among shift workers was associated with reduced urinary excretion of 8-hydroxydeoxyguanosine (8-OH-dG), potentially reflecting a reduced ability to repair 8-OH-dG lesions in DNA. We identified the absence of melatonin during day sleep as the likely causative factor. We now investigate whether night work is also associated with reduced urinary excretion of 8-OH-dG. METHODS: For this cross-sectional study, 50 shift workers with the largest negative differences in night work versus night sleep circulating melatonin levels (measured as 6-sulfatoxymelatonin in urine) were selected from among the 223 shift workers included in our previous study. 8-OH-dG concentrations were measured in stored urine samples using high performance liquid chromatography with electrochemical detection. Mixed effects models were used to compare night work versus night sleep 8-OH-dG levels. RESULTS: Circulating melatonin levels during night work (mean=17.1 ng/mg creatinine/mg creatinine) were much lower than during night sleep (mean=51.7 ng/mg creatinine). In adjusted analyses, average urinary 8-OH-dG levels during the night work period were only 20% of those observed during the night sleep period (95% CI 10% to 30%; p<0.001). CONCLUSIONS: This study suggests that night work, relative to night sleep, is associated with reduced repair of 8-OH-dG lesions in DNA and that the effect is likely driven by melatonin suppression occurring during night work relative to night sleep. If confirmed, future studies should evaluate melatonin supplementation as a means to restore oxidative DNA damage repair capacity among shift workers.
Chung KF, Seiffert J, Chen S, Theodorou IG, Goode AE, Leo BF, McGilvery CM, Hussain F, Wiegman C, Rossios C, et al. Inactivation, Clearance, and Functional Effects of Lung-Instilled Short and Long Silver Nanowires in Rats. ACS Nano. 2017;11:2652-2664.
AbstractThere is a potential for silver nanowires (AgNWs) to be inhaled, but there is little information on their health effects and their chemical transformation inside the lungs in vivo. We studied the effects of short (S-AgNWs; 1.5 mum) and long (L-AgNWs; 10 mum) nanowires instilled into the lungs of Sprague-Dawley rats. S- and L-AgNWs were phagocytosed and degraded by macrophages; there was no frustrated phagocytosis. Interestingly, both AgNWs were internalized in alveolar epithelial cells, with precipitation of Ag2S on their surface as secondary Ag2S nanoparticles. Quantitative serial block face three-dimensional scanning electron microscopy showed a small, but significant, reduction of NW lengths inside alveolar epithelial cells. AgNWs were also present in the lung subpleural space where L-AgNWs exposure resulted in more Ag+ve macrophages situated within the pleura and subpleural alveoli, compared with the S-AgNWs exposure. For both AgNWs, there was lung inflammation at day 1, disappearing by day 21, but in bronchoalveolar lavage fluid (BALF), L-AgNWs caused a delayed neutrophilic and macrophagic inflammation, while S-AgNWs caused only acute transient neutrophilia. Surfactant protein D (SP-D) levels in BALF increased after S- and L-AgNWs exposure at day 7. L-AgNWs induced MIP-1alpha and S-AgNWs induced IL-18 at day 1. Large airway bronchial responsiveness to acetylcholine increased following L-AgNWs, but not S-AgNWs, exposure. The attenuated response to AgNW instillation may be due to silver inactivation after precipitation of Ag2S with limited dissolution. Our findings have important consequences for the safety of silver-based technologies to human health.
Altemose B, Robson MG, Kipen HM, Strickland PO, Meng QY, Gong JC, Huang W, Wang GF, Rich DQ, Zhu T, et al. Association of air pollution sources and aldehydes with biomarkers of blood coagulation, pulmonary inflammation, and systemic oxidative stress. Journal of Exposure Science and Environmental Epidemiology. 2017;27:244-250.
AbstractUsing data collected before, during, and after the 2008 Summer Olympic Games in Beijing, this study examines associations between biomarkers of blood coagulation (vWF, sCD62P and sCD40L), pulmonary inflammation (EBC pH, EBC nitrite, and eNO), and systemic oxidative stress (urinary 8-OHdG) with sources of air pollution identified utilizing principal component analysis and with concentrations of three aldehydes of health concern. Associations between the biomarkers and the air pollution source types and aldehydes were examined using a linear mixed effects model, regressing through seven lag days and controlling for ambient temperature, relative humidity, gender, and day of week for the biomarker measurements. The biomarkers for pulmonary inflammation, particularly EBC pH and eNO, were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The biomarkers for blood coagulation, particularly vWF and sCD62p, were most consistently associated with oil combustion. Systemic oxidative stress biomarker (8-OHdG) was most consistently associated with vehicle and industrial combustion. The associations of the biomarkers were generally not significant or consistent with secondary formation of pollutants and with the aldehydes. The findings support policies to control anthropogenic pollution sources rather than natural soil or road dust from a cardio-respiratory health standpoint.
Day DB, Xiang J, Mo J, Li F, Chung M, Gong J, Weschler CJ, Ohman-Strickland PA, Sundell J, Weng W, et al. Association of Ozone Exposure With Cardiorespiratory Pathophysiologic Mechanisms in Healthy Adults. JAMA Intern Med. 2017;177:1344-1353.
AbstractImportance: Exposure to ozone has been associated with cardiovascular mortality, but the underlying biological mechanisms are not yet understood. Objective: To examine the association between ozone exposure and cardiopulmonary pathophysiologic mechanisms. Design, Setting, and Participants: A longitudinal study involving 89 healthy adult participants living on a work campus in Changsha City, China, was conducted from December 1, 2014, to January 31, 2015. This unique quasiexperimental setting allowed for better characterization of air pollutant exposure effects because the participants spent most of their time in controlled indoor environments. Concentrations of indoor and outdoor ozone, along with the copollutants particulate matter, nitrogen dioxide, and sulfur dioxide, were monitored throughout the study period and then combined with time-activity information and filtration conditions of each residence and office to estimate 24-hour and 2-week combined indoor and outdoor mean exposure concentrations. Associations between each exposure measure and outcome measure were analyzed using single-pollutant and 2-pollutant linear mixed models controlling for ambient temperature, secondhand smoke exposure, and personal-level time-varying covariates. Main Outcomes and Measures: Biomarkers indicative of inflammation and oxidative stress, arterial stiffness, blood pressure, thrombotic factors, and spirometry were measured at 4 sessions. Results: Of the 89 participants, 25 (28%) were women and the mean (SD) age was 31.5 (7.6) years. The 24-hour ozone exposure concentrations ranged from 1.4 to 19.4 parts per billion (ppb), corresponding to outdoor concentrations ranging from 4.3 to 47.9 ppb. Within this range, in models controlling for a second copollutant and other potential confounders, a 10-ppb increase in 24-hour ozone was associated with mean increases of 36.3% (95% CI, 29.9%-43.0%) in the level of platelet activation marker soluble P-selectin, 2.8% (95% CI, 0.6%-5.1%) in diastolic blood pressure, 18.1% (95% CI, 4.5%-33.5%) in pulmonary inflammation markers fractional exhaled nitric oxide, and 31.0% (95% CI, 0.2%-71.1%) in exhaled breath condensate nitrite and nitrate as well as a -9.5% (95% CI, -17.7% to -1.4%) decrease in arterial stiffness marker augmentation index. A 10-ppb increase in 2-week ozone was associated with increases of 61.1% (95% CI, 37.8%-88.2%) in soluble P-selectin level and 126.2% (95% CI, 12.1%-356.2%) in exhaled breath condensate nitrite and nitrate level. Other measured biomarkers, including spirometry, showed no significant associations with either 24-hour ozone or 2-week ozone exposures. Conclusions and Relevance: Short-term ozone exposure at levels not associated with lung function changes was associated with platelet activation and blood pressure increases, suggesting a possible mechanism by which ozone may affect cardiovascular health.