科研成果 by Year: 2022

2022
Xiang L, Wang Y, Xia F, Liu F, He D, Long G, Zeng X, Liang X, Jin C, Wang Y, et al. An epidermal electronic system for physiological information acquisition, processing, and storage with an integrated flash memory array. Science Advances [Internet]. 2022;8:eabp8075. 访问链接Abstract
Epidermal electronic systems that simultaneously provide physiological information acquisition, processing, and storage are in high demand for health care/clinical applications. However, these system-level demonstrations using flexible devices are still challenging because of obstacles in device performance, functional module construction, or integration scale. Here, on the basis of carbon nanotubes, we present an epidermal system that incorporates flexible sensors, sensor interface circuits, and an integrated flash memory array to collect physiological information from the human body surface; amplify weak biosignals by high-performance differential amplifiers (voltage gain of 27 decibels, common-mode rejection ratio of >43 decibels, and gain bandwidth product of >22 kilohertz); and store the processed information in the memory array with performance on par with industrial standards (retention time of 108 seconds, program/erase voltages of ±2 volts, and endurance of 106 cycles). The results shed light on the great application potential of epidermal electronic systems in personalized diagnostic and physiological monitoring. A CNT-based epidermal system is proposed for physiological signal capturing, processing, and storage.
Xia F, Xia T, Xiang L, Ding S, Li S, Yin Y, Xi M, Jin C, Liang X, Hu Y. Carbon Nanotube-Based Flexible Ferroelectric Synaptic Transistors for Neuromorphic Computing. ACS Applied Materials & Interfaces [Internet]. 2022;14:30124-30132. 访问链接Abstract
Biological nervous systems evolved in nature have marvelous information processing capacities, which have great reference value for modern information technologies. To expand the function of electronic devices with applications in smart health monitoring and treatment, wearable energy-efficient computing, neuroprosthetics, etc., flexible artificial synapses for neuromorphic computing will play a crucial role. Here, carbon nanotube-based ferroelectric synaptic transistors are realized on ultrathin flexible substrates via a low-temperature approach not exceeding 90 °C to grow ferroelectric dielectrics in which the single-pulse, paired-pulse, and repetitive-pulse responses testify to well-mimicked plasticity in artificial synapses. The long-term potentiation and long-term depression processes in the device demonstrate a dynamic range as large as 2000×, and 360 distinguishable conductance states are achieved with a weight increase/decrease nonlinearity of no more than 1 by applying stepped identical pulses. The stability of the device is verified by the almost unchanged performance after the device is kept in ambient conditions without additional passivation for 240 days. An artificial neural network-based simulation is conducted to benchmark the hardware performance of the neuromorphic devices in which a pattern recognition accuracy of 95.24% is achieved.
Xia F, Xia T, Xiang L, Liu F, Jia W, Liang X, Hu Y. High-Performance Carbon Nanotube-Based Transient Complementary Electronics. ACS Applied Materials & Interfaces [Internet]. 2022;14:12515-12522. 访问链接Abstract
Transient electronics is an emerging class of electronic devices that can physically degrade or disintegrate after a stable period of service, showing a vast prospect in applications of “green” consumer electronics, hardware-secure devices, medical implants, etc. Complementary metal-oxide–semiconductor (CMOS) technology is dominant in integrated circuit design for its advantages of low static power consumption, high noise immunity, and simple design layout, which also work and are highly preferred for transient electronics. However, the performance of complementary transient electronics is severely restricted by the confined selection of transient materials and compatible fabrication strategies. Here, we report the realization of high-performance transient complementary electronics based on carbon nanotube thin films via a reliable electrostatic doping method. Under a low operating voltage of 2 V, on a 1.5 μm-thick water-soluble substrate made of poly(vinyl alcohol), the width-normalized on-state currents of the p-type and n-type transient thin-film transistors (TFTs) reach 4.5 and 4.7 μA/μm, and the width-normalized transconductances reach 2.8 and 3.7 μS/μm, respectively. Meanwhile, these TFTs show small subthreshold swings no more than 108 mV/dec and current on/off ratios above 106 with good uniformity. Transient CMOS inverters, as basic circuit components, are demonstrated with a voltage gain of 24 and a high noise immunity of 67.4%. Finally, both the degradation of the active components and the disintegration of the functional system are continuously monitored with nontraceable remains after 10 and 5 h, respectively.
Zeng X, Liu Y, Liu F, Wang W, Liu X, Wei X, Hu Y. A bioinspired three-dimensional integrated e-skin for multiple mechanical stimuli recognition. Nano Energy [Internet]. 2022;92:106777. 访问链接Abstract
Spatiotemporal recognition of multiple mechanical stimuli is essential for electronic skin (e-skin), which can provide more complete and accurate interaction information to enable elaborated functions, such as gesture recognition, object manipulation, and fine tactile discrimination. However, nonspecific sensor response and performance sacrifice for integration limit the perceptual capability of the current systems. Here, we report a bioinspired e-skin that can measure strain, shear and pressure independently with direction information using three-dimensional integrated, mechanically isolated multiple sensors. Novel microstructures of collapsed nanocone clusters, hemi-ellipsoids, and wrinkles are introduced in different sensors to achieve a gauge factor of 6 with a linear working range of 80% (linearity > 0.99) for strain, a sensitivity of 0.1 N−1 for shear force, and a sensitivity of 3.78 kPa−1 for pressure, and all of these sensors possess short response times on the order of 100 ms. The independent, highly sensitive, and fast response of these sensors makes real-time recording and mapping of multiple mechanical stimuli to be achieved. Multi-touch gesture recognition and perception of a red bean (0.065 g) in the hand are demonstrated to illustrate the potential applications in wearables, robotics and bionic prostheses.
Long G, Jin W, Xia F, Wang Y, Bai T, Chen X, Liang X, Peng L-M, Hu Y. Carbon nanotube-based flexible high-speed circuits with sub-nanosecond stage delays. NATURE COMMUNICATIONS [Internet]. 2022;13. 访问链接Abstract
High-speed flexible circuits are required in flexible systems to realize real-time information analysis or to construct wireless communication modules for emerging applications. Here, we present scaled carbon nanotube-based thin film transistors (CNT-TFTs) with channel lengths down to 450 nm on 2-mu m-thick parylene substrates, achieving state-of-the-art performances of high on-state current (187.6 mu A mu m(-1)) and large transconductance (123.3 mu S mu m(-1)). Scaling behavior analyses reveal that the enhanced performance introduced by scaling is attributed to channel resistance reduction while the contact resistance (180 +/- 50 k omega per tube) remains unchanged, which is comparable to that achieved in devices on rigid substrates, indicating great potential in ultimate scaled flexible CNT-TFTs with high performance comparable to their counterparts on rigid substrates where contact resistance dominates the performance. Five-stage flexible ring oscillators are built to benchmark the speed of scaled devices, demonstrating a 281 ps stage delay at a low supply voltage of 2.6 V. High-speed flexible circuits are essential in flexible systems for real-time information analysis and wireless communication. Here, flexible circuits are reported with a 281 ps stage delay based on scaled carbon nanotube thin film transistors.
Gong Q, Hu Y*. Ultrasoft, mass-permeable, and low-impedance hydrogels for tissue-like skin-device interfaces. Science Bulletin [Internet]. 2022;67:114-116. 访问链接