科研成果 by Year: 2023

2023
Liang X, Qian S, Lou Z, Hu R, Hou Y, Chen* PR, Fan* X. Near Infrared Light-Triggered Photocatalytic Decaging for Remote-Controlled Spatiotemporal Activation in Living Mice**. Angewandte Chemie International EditionAngewandte Chemie International Edition. 2023;62:e202310920.Abstract
Abstract Spatiotemporal manipulation of biological processes in living animals using noninvasive, remote-controlled stimuli is a captivating but challenging endeavor. Herein, we present the development of a biocompatible photocatalytic technology termed CAT-NIR, which uses external near infrared light (NIR, 740?nm) to trigger decaging reactions in living mice. The Os(II) terpyridine complex was identified as an efficient NIR photocatalyst for promoting deboronative hydroxylation reactions via superoxide generation in the presence of NIR light, resulting in the deprotection of phenol groups and the release of bioactive molecules under living conditions. The validation of the CAT-NIR system was demonstrated through the NIR-triggered rescue of fluorophores, prodrugs as well as biomolecules ranging from amino acids, peptides to proteins. Furthermore, by combining genetic code expansion and computer-aided screening, CAT-NIR could regulate affibody binding to the cell surface receptor HER2, providing a selective cell tagging technology through external NIR light. In particular, the tissue-penetrating ability of NIR light allowed for facile prodrug activation in living mice, enabling noninvasive, remote-controlled rescue of drug molecules. Given its broad adaptability, this CAT-NIR system may open new opportunities for manipulating the functions of bioactive molecules in living animals using external NIR light with spatiotemporal resolution.
Liu Y, Ge Y, Zeng R, Ngai William Shu C, Fan* X, Chen Peng R *. Proximity Chemistry in Living Systems. CCS Chemistry. 2023;5:802-813.
Guo F, Shan S, Gong X, Dai C, Quan Z*, Cheng X*, Fan* X. Deuteration Degree-Controllable Methylation via a Cascade Assembly Strategy using Methylamine-Water as Methyl Source. Chemistry – A European Journal. 2023;29:e202301458.Abstract
Abstract We present a novel and effective photocatalytic method for the methylation of ?-diketones with controllable degrees of deuterium incorporation via development of new methyl sources. By utilizing a methylamine-water system as the methyl precursor and a cascade assembly strategy for deuteration degree control, we synthesized methylated compounds with varying degrees of deuterium incorporation, showcasing the versatility of this approach. We examined a range of ?-diketone substrates and synthesized key intermediates for drug and bioactive compounds with varying degrees of deuterium incorporation, ranging from 0 to 3. We also investigated and discussed the postulated reaction pathway. This work demonstrates the utility of readily available reagents, methylamines and water, as a new methyl source, and provides a simple and efficient strategy for the synthesis of degree-controllable deuterium-labelled compounds.
Zhang X, Huang H, Liu Y, Wu Z, Wang F, Fan* X, Chen* PR, Wang* J. Optical Control of Protein Functions via Genetically Encoded Photocaged Aspartic Acids. Journal of the American Chemical SocietyJournal of the American Chemical Society. 2023;145:19218-19224.
Fan* X, Chen* PR. Deciphering Life Sciences with “Live” Chemistry—The 2022 Nobel Prize in Chemistry. Science China ChemistryScience China Chemistry. 2023;66:7-9.