摘要:
This paper presents a CFD modeling of deNOx process in a coal-fired power plant selective catalytic reduction (SCR) system, with focus on the transient hydrodynamics of multi-species flow and the influence of vortex on the deNOx process. For this purpose, a comprehensive CFD model is established, parameter study and model validation are performed, and the hydrodynamics, vortex evolution and species concentration distribution are numerically investigated. Simulation results indicate that many vortices with various scale/intensity/shape exist in the SCR system, causing apparent pressure pulsations and velocity fluctuations. High-intensity eddies are mainly distributed in the deflector group Ι, the NH3 nozzles, the static mixer, and the right part of the rectifying grille. The number of eddies decreases significantly with reducing the unit loads. Affected by vortex evolution, the NH3 concentration fluctuates in the SCR system, especially in the vertical flue. The deNOx process completes within 6 s, and the ammonia slip is less than 1.0 ppm, which well meets the requirement of industrial standards. In addition, the static mixer severely destroys the velocity uniformity but favors the mixing of NH3 and NOx. The rectifying grille improves the uniformity of flow field and species concentration field significantly.
Website