AFM vs. Nanoindentation: Nanomechanical properties of organic-rich Shale

Citation:

Kong L, Hadavimoghaddam F, Li C, Liu K, Liu B, Semnani A, Ostadhassan M. AFM vs. Nanoindentation: Nanomechanical properties of organic-rich Shale. Marine and Petroleum Geology [Internet]. 2021;132:105229.

摘要:

Obtaining elastic properties of organic-rich shales through conventional geomechanical testing could be challenging due to availability of good quality core plugs and significant heterogeneous nature of the samples. In this regard, force spectroscopy methods, nanoindentation and atomic force microscopy (AFM) are two main powerful techniques to characterize elastic properties in nano/microscale. In this study, we investigate the applicability of these two methods on the same samples, by quantifying elastic modulus from the Bakken Shale. AFM provided us with modulus maps of higher resolution compared to the modulus maps from the nanoindentation that were created via geostatistical methods. Moreover, results from these methods were compared to demonstrate the advantages and shortcomings of each and discripancy in the outcome. To do so, multi-cluster deconvolution approach was adopted in the statistical analysis on the nanoindentation data, demonstrating 3 separate clusters and mechanical phases. AFM technique, similarly, distinguished three separate (mineral and organic) phases based on the corresponding modulus values, though with higher accuracy compared to nanoindentation and better distinction and less tolerance. It was found that nanoindentation, because it collects discrete datapoints that are farther apart from each other when thermal maturity is increased in the samples, would have difficulty to separate organic matter from intermediary phases. Overall, the range of modulus for each phase was larger in the data that was obtained by nanoindentation compared to the AFM which can be interpreted to the size of the tip and general higher resolution in the later one which is expected to probe a single particle rather than an aggregate of particles.

Website