科研成果 by Year: 2018

2018
Liu K, Ostadhassan M, Gentzis T, Carvajal-Ortiz H, Bubach B. Characterization of geochemical properties and microstructures of the Bakken Shale in North Dakota. International Journal of Coal Geology [Internet]. 2018;190:84-98. 访问链接Abstract
Research on unconventional shale reservoirs has increased dramatically due to the decline of production from conventional reserves. Geochemical properties and pore microstructures are known to be important factors that affect the storage capacity and nano-mechanical properties of self-sourced organic- rich shales. In this study, eleven shale samples were collected from the Upper and Lower Members of the Bakken Formation for the analysis of mineralogy, geochemical properties, and pore structure. Bulk pyrolysis analysis was conducted using the default method and two modified methods, namely the reservoir and the shale reservoir methods. Although all three methods showed the Bakken samples to be organic-rich and to have considerable remaining hydrocarbon generating potential, it was the shale reservoir method that gave the highest hydrocarbons yield because it captured most of the lighter thermo-vaporizable hydrocarbons. Thus, the shale method is considered to be more appropriate for the geochemical analysis of the Bakken samples. This method also showed that most of the remaining potential is due to the cracking of heavy hydrocarbons, NSO compounds (Resins+Asphaltenes) and kerogen. The organic matter in the samples is mixed II/III type (oil and gas-prone), is thermally mature, and plots at the peak of the oil window. The VRo-eq values, based on solid bitumen Ro measurements and conversion, ranged from 0.85% to 0.98%. The pore structures obtained from the image analysis method showed that total surface porosity of the samples ranged from 3.89% to 11.56% and that organic porosity is not the main contributor of total porosity for the samples analyzed. The pore structures of the samples are heterogeneous due to differences in lacunarity values. Results of the impact of mineralogical composition on pore structures demonstrate that clay minerals and feldspar have a positive influence on porosity while quartz, pyrite, and that TOC has a negative impact.
Liu K, Ostadhassan M, Bubach B. Application of nanoindentation to characterize creep behavior of oil shales. Journal of Petroleum Science and Engineering [Internet]. 2018;167:729-736. 访问链接Abstract
In petroleum industry, creep behavior of rocks can affect the fracture conductivity, well productivity and ultimate recovery of the reservoir, in shale formations in particular. To get a better insight into this phenomenon, in this study, we applied grid nanoindentation method as a function of time to quantify creep behavior of shale rocks which is a complex material. The deconvolution results from statistical analysis of the data showed that shale samples could be distinguished by three mechanical phases where the mechanical phase with the largest hardness value exhibits the least creep deformation. Burgers models was applied to characterize the creep behavior of our shale samples. We realized as creep time increases, the creep time constant value increases, therefore, a logarithmic function can be used to quantify their correlations. This study showed that as the creep time increases, Young's modulus, hardness, and fracture toughness will decrease. Finally, we concluded, shale samples become softer and more prone to fracture growth as the creep time increases.
Liu K, Ostadhassan M, Bubach B, Ling K, Tokhmechi B, Robert D. Statistical grid nanoindentation analysis to estimate macro-mechanical properties of the Bakken Shale. Journal of Natural Gas Science and Engineering [Internet]. 2018;53:181-190. 访问链接Abstract
Retrieving standard sized core plugs to perform conventional geomechanical testing on organic rich shale samples can be very challenging. This is due to unavailability of inch-size core plugs or difficulties in the coring process. In order to overcome these issues, statistical grid nanoindentation method was applied to analyze mechanical properties of the Bakken. Then the Mori-Tanaka scheme was carried out to homogenize the elastic properties of the samples and upscale the nanoindentation data to the macroscale. To verify these procedures, the results were compared with unconfined compression test data. The results showed that the surveyed surface which was 300 μm ×300 μm is larger than the representative elementary area (REA) and can be used safely as the nanoindentation grid area. Three different mechanical phases and the corresponding percentages can be derived from the grid nanoindentation through deconvolution of the data. It was found that the mechanical phase which has the smallest mean Young's modulus represents soft materials (mainly clay and organic matter) while the mechanical phases with the largest mean Young's modulus denote hard minerals. The mechanical properties (Young's modulus and hardness) of the samples in X-1 direction (perpendicular to the bedding line) was measured smaller than X-3 direction (parallel to the bedding line) which reflected mechanical anisotropy. The discrepancy between the macromechanical modulus from the homogenization and unconfined compression test was less than 15% which was acceptable. Finally, we showed that homogenization provides more accurate upscaling results compared to the common averaging method.
Liu K, Ostadhassan M, Kong L. Multifractal characteristics of Longmaxi Shale pore structures by N2 adsorption: A model comparison. Journal of Petroleum Science and Engineering [Internet]. 2018;168:330-341. 访问链接Abstract
N2 adsorption is one of the most widely used techniques to assess pore structures of shale samples due to its ability for characterizing pores in nanoscale. Various models have been developed to quantify pore structures based on adsorption isotherms. In this regard, using a suitable model can give us more accurate pore structure information. The Barret, Joyner and Halenda (BJH) model along with density functional theory (DFT), two most frequently used ones for pore structures of shales, employed on Longmaxi shale samples and compared. BJH model can be divided into two sub-models: adsorption (BJHAD) and desorption (BJHDE). First, the multifractal analysis was used to quantify the heterogeneity of pore size distributions derived from these models. Second, partial least regression analysis (PLS) was employed to quantify the correlations between pore structures and rock compositions. The results showed that pore structures (volume and surface area) and pore heterogeneity derived from BJHAD, BJHDE and DFT model would differ. In addition, PLS results indicated that minerals (except dolomite and clay) and organic matter would correlate positively while clay minerals negatively with pore surface area and volume independent of the method that was used. Finally, the comparison of results from these three methods demonstrated that DFT model is superior to BJHAD and BJHDE for pore structure characterization in shale gas formations.
Zou J, Rezaee R, Xie Q, You L, Liu K, Saeedi A. Investigation of moisture effect on methane adsorption capacity of shale samples. Fuel [Internet]. 2018;232:323-332. 访问链接Abstract
The existing moisture in shale samples makes the evaluation for shale gas reservoirs more difficult due to its impact on the methane adsorption capacity and pore structure measurements. This paper compares the pore structure characteristics and methane adsorption capacity between dry and wet shale samples from Perth Basin, Western Australia. Pores with size between 0.4 nm and 100 nm were quantified by low-pressure N2 and CO2 adsorption. The comparative results demonstrate that moisture could alter the pore size distribution for big pores (>16 nm) and small pores (0.4–16 nm) in different ways. For each sample, the moisture effect on methane adsorption in shales changes with pressure: moisture effect on methane adsorption is more pronounced at lower pressure than higher pressure. For all samples, the effect of moisture on methane adsorption is related to the total organic carbon (TOC) content. Moisture could reduce methane adsorption by blocking clay- hosted small pores directly and organic matter-hosted small pores indirectly in high TOC samples. This phenomenon can effectively lead to a reduced Langmuir volume (VL) and increased Langmuir pressure (PL) when moisture exists.
Liu K, Ostadhassan M, Zou J, Gentzis T, Rezaee R, Bubach B, Carvajal-Ortiz H. Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale. Fuel [Internet]. 2018;219:296-311. 访问链接Abstract
Understanding pore heterogeneity can enable us to obtain a deeper insight into the flow and transport processes in any porous medium. In this study, multifractal analysis was employed to analyze gas adsorption isotherms (CO2 and N2) for pore structure characterization in both a source (Upper-Lower Bakken) and a reservoir rock (Middle Bakken). For this purpose, detected micropores from CO2 adsorption isotherms and meso-macropores from N2 adsorption isotherms were analyzed separately. The results showed that the generalized dimensions derived from CO2 and the N2 adsorption isotherms decrease as q increases, demonstrating a multifractal behavior followed by f(α) curves of all pores exhibiting a very strong asymmetry shape. Samples from the Middle Bakken demonstrated the smallest average H value and largest average α10−-α10+ for micropores while samples from the Upper Bakken depicted the highest average α10−-α10+ for the meso-macropores. This indicated that the Middle Bakken and the Upper Bakken have the largest micropore and meso-macropore heterogeneity, respectively. The impact of rock composition on pore structures showed that organic matter could increase the micropore connectivity and reduce micropore heterogeneity. Also, organic matter will reduce meso-macropore connectivity and increase meso-macropore heterogeneity. We were not able to establish a robust relationship between maturity and pore heterogeneity of the source rock samples from the Bakken.
Liu K, Ostadhassan M, Zou J, Gentzis T, Rezaee R, Bubach B, Carvajal-Ortiz H. Nanopore structures of isolated kerogen and bulk shale in Bakken Formation. Fuel [Internet]. 2018;226:441-453. 访问链接Abstract
Pores that exist within the organic matter can affect the total pore system of bulk shale samples and, as a result, need to be studied and analyzed carefully. In this study, samples from the Bakken Formation, in conjunction with the kerogen that was isolated from them, were studied and compared through a set of analytical techniques: X-ray diffraction (XRD), Rock-Eval pyrolysis, Fourier Transform infrared spectroscopy (FTIR), and gas adsorption (CO2 and N2). The results can be summarized as follows: 1) quartz and clays are two major minerals in the Bakken samples; 2) the samples have rich organic matter content with TOC greater than 10 wt%; 3) kerogen is marine type II; 4) gas adsorption showed that isolated kerogen compared to the bulk sample has larger micropore volume and surface area, meso- and macropore volume, and Brunauer–Emmett–Teller (BET) surface area; 5) deconvolution of pore size distribution (PSD) curves demonstrated that pores in the isolated kerogen could be separated into five distinct clusters, whereas bulk shale samples exhibited one additional pore cluster with an average pore size of 4 nm hosted in the minerals. The comparison of PSD curves obtained from isolated kerogen and bulk shale samples proved that most of the micropores in the shale are hosted within the organic matter while the mesopores with a size ranging between 2 and 10 nm are mainly hosted by minerals. The overall results demonstrated that organic matter-hosted pores make a significant contribution to the total porosity of the Bakken shale samples.
Liu K, Ostadhassan M KL. Fractal and Multifractal Characteristics of Pore Throats in the Bakken Shale. Transport in Porous Media volume [Internet]. 2018;126:579-598. 访问链接Abstract
To evaluate pore structures of the Bakken Shale, which is one of the most important factors that affect petrophysical properties, high-pressure mercury intrusion was employed in this study. Pore structures such as pore-throat size, pore-throat ratio, and fractal attributes are investigated in this major shale play. Pore-throat size from 3.6 to 200 um is widely distributed in these shale samples. Accordingly, pore-throat size distributions demonstrate the multimodal behavior within the samples. The whole pore-throat network can be divided into four clusters: one set of large pores, two transitional/intermediate pore groups, and one set of smaller pores. The fractal analysis revealed that fractal dimensions decrease as the pore-throat size decreases. The multifractal analysis demonstrated that as the maturity of the shale samples increases, pore-throat size distributions would become more uniform and pore structures tend to become more homogeneous. The results are compared to our previous results obtained from nitrogen gas adsorption for further verifications of fractal behavior. Finally, although fractal analysis of mercury intrusion and nitrogen gas adsorption were comparable, the results of multifractal analysis from these two methods were not identical.
Liu K, Ostadhassan M BDRBRV. Nano-Dynamic Mechanical Analysis (nano-DMA)ofCreep BehaviorofShales: Bakken case study. Journal of Materials Science. 2018;53:4417-4432.Abstract
Understanding the time-dependent mechanical behavior of rocks is important from various aspects and different scales such as predicting reservoir subsidence due to depletion or proppant embedment. Instead of using the conventional creep tests, nano-dynamic mechanical analysis (nano-DMA) was applied in this study to quantify the displacement and mechanical changes in shale samples over its creep time at a very fine scale. The results showed that the minerals with various mechanical properties exhibit different creep behavior. It was found that under the same constant load and time conditions, the creep displacement of hard minerals would be smaller than those that are softer. On the contrary, the changes in mechanical properties (storage modulus, loss modulus, complex modulus and hardness) of hard minerals are larger than soft minerals. The results from curve fitting showed that the changes in creep displacement, storage modulus, complex modulus and hardness over creep time follow a logarithmic function. We further analyzed the mechanical changes in every single phase during the creep time based on the deconvolution method to realize each phase’s response independently. Two distinct mechanical phases can be derived from the deconvolution histograms. As the creep time increases, the volume percentage of the hard mechanical phase decreases, while this shows an increase for soft phases. The results suggest that nano-DMA can be a strong advocate to study the creep behavior of rocks with complex mineralogy.