摘要:
When using Laguerre and Hermite spectral methods to numerically solve PDEs in unbounded domains, the number of collocation points assigned inside the region of interest is often insufficient, particularly when the region is expanded or translated in order to safely capture the unknown solution. Simply increasing the number of collocation points cannot ensure a fast convergence to spectral accuracy. In this paper, we propose a scaling technique and a moving technique to adaptively cluster enough collocation points in a region of interest in order to achieve fast spectral convergence. Our scaling algorithm employs an indicator in the frequency domain that both is used to determine when scaling is needed and informs the tuning of a scaling factor to redistribute collocation points in order to adapt to the diffusive behavior of the solution. Our moving technique adopts an exterior-error indicator and moves the collocation points to capture the translation. Both frequency and exterior-error indicators are defined using only the numerical solutions. We apply our methods to a number of different models, including diffusive and moving Fermi--Dirac distributions and nonlinear Dirac solitary waves, and demonstrate recovery of spectral convergence for time-dependent simulations. A performance comparison in solving a linear parabolic problem shows that our frequency scaling algorithm outperforms the existing scaling approaches. We also show our frequency scaling technique is able to track the blowup of average cell sizes in a model for cell proliferation. In addition to the Laguerre and Hermite basis functions with exponential decay at infinity, we also successfully apply the frequency-dependent scaling technique into rational basis functions with algebraic decay at infinity.
访问链接