成果 PUBLICATIONS

2016
Lee AKY, Abbatt JPD, Leaitch RW, Li S-M, Sjostedt SJ, Wentzell JJB, Liggio J, Macdonald AM. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry. ATMOSPHERIC CHEMISTRY AND PHYSICS. 2016;16:6721-6733.Abstract
Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identified two types of BSOA (BSOA-1 and BSOA-2), which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas-particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 arises from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is likely less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22-33aEuro-% of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/zaEuro-91 (f(91)) compared to the background organic aerosol. Using f(91) to evaluate BSOA formation pathways in this unpolluted, forested region, heterogeneous oxidation of BSOA-1 is a minor production pathway of BSOA-2.
Fioletov VE, McLinden CA, Cede A, Davies J, Mihele C, Netcheva S, Li S-M, O'Brien J. Sulfur dioxide (SO2) vertical column density measurements by Pandora spectrometer over the Canadian oil sands. ATMOSPHERIC MEASUREMENT TECHNIQUES. 2016;9:2961-2976.Abstract
Vertical column densities (VCDs) of SO2 retrieved by a Pandora spectral sun photometer at Fort McKay, Alberta, Canada, from 2013 to 2015 were analysed. The Fort McKay site is located in the Canadian oil sands region, approximately 20 km north of two major SO2 sources (upgraders), with total emission of about 45 kt yr(-1). Elevated SO2 VCD values were frequently recorded by the instrument, with the highest values of about 9 Dobson Units (DU; DU = 2.69 x 10(16) molecules cm(-2)). Comparisons with co-located in situ measurements demonstrated that there was a very good correlation between VCDs and surface concentrations in some cases, while in other cases, elevated VCDs did not correspond to high surface concentrations, suggesting the plume was above the ground. Elevated VCDs and surface concentrations were observed when the wind direction was from south to southeast, i.e. from the direction of the two local SO2 sources. The precision of the SO2 measurements, estimated from parallel measurements by two Pandora instruments at Toronto, is 0.17 DU. The total uncertainty of Pandora SO2 VCD, estimated using measurements when the wind direction was away from the sources, is less than 0.26DU (1 sigma). Comparisons with integrated SO2 profiles from concurrent aircraft measurements support these estimates.
2015
Wu C-C, Bao L-J, Guo Y, Li S-M, Zeng EY. Barbecue Fumes: An Overlooked Source of Health Hazards in Outdoor Settings?. ENVIRONMENTAL SCIENCE & TECHNOLOGY. 2015;49:10607-10615.Abstract
Barbecuing or charcoal-grilling has become part of popular outdoor recreational activities nowadays; however, potential human health hazards through outdoor exposure to barbecue fumes have yet to be adequately quantified. To fill this knowledge gap, atmospheric size-fractioned particle and gaseous samples were collected near an outdoor barbecuing vendor stall (along with charcoal-grilled food items) in Xinjiang of Northwest China with a 10-stage micro-orifice uniform deposit impactor and a polyurethane foam (PUP) sampler and were analyzed for particulate matter and polycyclic aromatic hydrocarbons (PAHs). Exposure to PAHs through inhalation and dermal contact by adult consumers who spent 1 h per day near a charcoal-grilling vendor for a normal meal (lunch or dinner) amounted to a BaP equivalent (BaPeq) dosage of 3.0-77 ng day(-1) (inhalation: 2.8-27 ng day(-1) of BaPeq; dermal contact: 0.2-50 ng day(-1) of BaPeq), comparable to those (22-220 ng day(-1) of BaPeq) from consumer exposure through the consumption of charcoal-grilled meat, assumed to be at the upper limit of 50-150 g. In addition, the potential health risk was in the range of 3.1 X 10(-10) to 1.4 X 10(-4) for people of different age groups with inhalation and dermal contact exposure to PAHs once a day, with a 95% confidence interval (7.2 X 10(-9) to 1.2 X 10(-6)) comparable to the lower limit of the potential cancer risk range (1 X 10(-6) to 1 X 10(-4)). Sensitivity analyses indicated that the area of dermal contact with gaseous contaminants is a critical parameter for risk assessment. These results indicated that outdoor exposure to barbecue fumes (particularly dermal contact) may have become a significant but largely neglected source of health hazards to the general population and should be well-recognized.
Luo P, Bao L-J, Li S-M, Zeng EY. Size-dependent distribution and inhalation cancer risk of particle-bound polycyclic aromatic hydrocarbons at a typical e-waste recycling and an urban site. ENVIRONMENTAL POLLUTION. 2015;200:10-15.Abstract
Atmospheric particle size distribution of polycyclic aromatic hydrocarbons (PAHs) in a typical e-waste recycling zone and an urban site (Guangzhou) in southern China featured a unimodal peak in 0.56 -1.8 mu m for 4-6 ring PAHs but no obvious peak for 2-3 ring PAHs at both sites. The atmospheric deposition fluxes of PAHs were estimated at 5.4 +/- 2.3 mu g m(-2) d(-1) in the e-waste recycling zone and 3.1 +/- 0.6 mu g m(-2) d(-1) in Guangzhou. In addition, dry and wet deposition fluxes of PAHs were dominated by coarse (D-p > 1.8 mu m) and fine particles (D-p < 1.8 mu m), respectively. Fine particles predominated the deposition of PAHs in the lung. The results estimated by incremental inhalation cancer risk suggested that particle-bound PAHs posed serious threat to human health within the e-waste recycling zone and Guangzhou. (C) 2015 Elsevier Ltd. All rights reserved.
Liu Y, Liggio J, Li S-M, Breznan D, Vincent R, Thomson EM, Kumarathasan P, Das D, Abbatt J, Antinolo M, et al. Chemical and Toxicological Evolution of Carbon Nanotubes During Atmospherically Relevant Aging Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY. 2015;49:2806-2814.Abstract
The toxicity of carbon nanotubes (CNTs) has received significant attention due to their usage in a wide range of commercial applications. While numerous studies exist on their impacts in water and soil ecosystems, there is a lack of information on the exposure to CNTs from the atmosphere. The transformation of CNTs in the atmosphere, resulting in their functionalization, may significantly alter their toxicity. In the current study, the chemical modification of single wall carbon nanotubes (SWCNTs) via ozone and OH radical oxidation is investigated through studies that simulate a range of expected tropospheric particulate matter (PM) lifetimes, in order to link their chemical evolution to toxicological changes. The results indicate that the oxidation favors carboxylic acid functionalization, but significantly less than other studies performed under nonatmospheric conditions. Despite evidence of functionalization, neither O-3 nor OH radical oxidation resulted in a change in redox activity (potentially giving rise to oxidative stress) or in cytotoxic end points. Conversely, both the redox activity and cytotoxicity of SWCNTs significantly decreased when exposed to ambient urban air, likely due to the adsorption of organic carbon vapors. These results suggest that the effect of gas-particle partitioning of organics in the atmosphere on the toxicity of SWCNTs should be investigated further.
Massoli P, Onasch TB, Cappa CD, Nuamaan I, Hakala J, Hayden K, Li S-M, Sueper DT, Bates TS, Quinn PK, et al. Characterization of black carbon-containing particles from soot particle aerosol mass spectrometer measurements on the R/V Atlantis during CalNex 2010. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. 2015;120:2575-2593.Abstract
We present mass spectrometry measurements of black carbon-containing particles made on board the R/V Atlantis during the CalNex (California Research at the Nexus of Air Quality and Climate Change) 2010 study using an Aerodyne Research Inc. soot particle aerosol mass spectrometer (SP-AMS). The R/V Atlantis was deployed to characterize air masses moving offshore the California coast and to assess emissions from sources in urban ports. This work presents a first detailed analysis of the size-resolved chemical composition of refractory black carbon (rBC) and of the associated coating species (NR-PMBC). A colocated standard high-resolution aerosol mass spectrometer (HR-AMS) measured the total nonrefractory submicron aerosol (NR-PM1). Our results indicate that, on average, 35% of the measured NR-PM1 mass (87% of the primary and 28% of the secondary NR-PM1, as obtained from the mass-weighted average of the NR-PMBC species) was associated with rBC. The peak in the average size distribution of the rBC-containing particles measured by the SP-AMS in vacuum aerodynamic diameter (d(va)) varied from 100 nm to 450 nm d(va), with most of the rBC mass below 200 d(va). The NR-PMBC below 200 nm d(va) was primarily organic, whereas inorganics were generally found on larger rBC-containing particles. Positive matrix factorization analyses of both SP-AMS and HR-AMS data identified organic aerosol factors that were correlated in time but had different fragmentation patterns due to the different instruments vaporization techniques. Finally, we provide an overview of the volatility properties of NR-PMBC and report the presence of refractory oxygen species in some of the air masses encountered.
Liu Y, Liggio J, Staebler R, Li S-M. Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation. ATMOSPHERIC CHEMISTRY AND PHYSICS. 2015;15:13569-13584.Abstract
As a class of brown carbon, organonitrogen compounds originating from the heterogeneous uptake of NH3 by secondary organic aerosol (SOA) have received significant attention recently. In the current work, particulate organonitrogen formation during the ozonolysis of alpha-pinene and the OH oxidation of m-xylene in the presence of ammonia (34-125 ppb) was studied in a smog chamber equipped with a high resolution time-of-flight aerosol mass spectrometer and a quantum cascade laser instrument. A large diversity of nitrogen-containing organic (NOC) fragments was observed which were consistent with the reactions between ammonia and carbonyl-containing SOA. Ammonia uptake coefficients onto SOA which led to organonitrogen compounds were reported for the first time, and were in the range of similar to 10(-3)-10(-2), decreasing significantly to <10(-5) after 6 h of reaction. At the end of experiments (similar to 6 h) the NOC mass contributed 8.9 +/- 1.7 and 31.5 +/- 4.4 wt% to the total alpha-pineneand m-xylene-derived SOA, respectively, and 4-15 wt% of the total nitrogen in the system. Uptake coefficients were also found to be positively correlated with particle acidity and negatively correlated with NH3 concentration, indicating that heterogeneous reactions were responsible for the observed NOC mass, possibly limited by liquid phase diffusion. Under these conditions, the data also indicate that the formation of NOC can compete kinetically with inorganic acid neutralization. The formation of NOC in this study suggests that a significant portion of the ambient particle associated N may be derived from NH3 heterogeneous reactions with SOA. NOC from such a mechanism may be an important and unaccounted for source of PM associated nitrogen. This mechanism may also contribute to the medium or long-range transport and wet/dry deposition of atmospheric nitrogen.
Gordon M, Li S-M, Staebler R, Darlington A, Hayden K, O'Brien J, Wolde M. Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations. ATMOSPHERIC MEASUREMENT TECHNIQUES. 2015;8:3745-3765.Abstract
Top-down approaches to measure total integrated emissions provide verification of bottom-up, temporally resolved, inventory-based estimations. Aircraft-based measurements of air pollutants from sources in the Canadian oil sands were made in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring during a summer intensive field campaign between 13 August and 7 September 2013. The measurements contribute to knowledge needed in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring. This paper describes the top-down emission rate retrieval algorithm (TERRA) to determine facility emissions of pollutants, using SO2 and CH4 as examples, based on the aircraft measurements. In this algorithm, the flight path around a facility at multiple heights is mapped to a two-dimensional vertical screen surrounding the facility. The total transport of SO2 and CH4 through this screen is calculated using aircraft wind measurements, and facility emissions are then calculated based on the divergence theorem with estimations of box-top losses, horizontal and vertical turbulent fluxes, surface deposition, and apparent losses due to air densification and chemical reaction. Example calculations for two separate flights are presented. During an upset condition of SO2 emissions on one day, these calculations are within 5% of the industry-reported, bottom-up measurements. During a return to normal operating conditions, the SO2 emissions are within 11% of industry-reported, bottom-up measurements. CH4 emissions calculated with the algorithm are relatively constant within the range of uncertainties. Uncertainty of the emission rates is estimated as less than 30 %, which is primarily due to the unknown SO2 and CH4 mixing ratios near the surface below the lowest flight level.
Yuan B, Veres PR, Warneke C, Roberts JM, Gilman JB, Koss A, Edwards PM, Graus M, Kuster WC, Li S-M, et al. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region. ATMOSPHERIC CHEMISTRY AND PHYSICS. 2015;15:1975-1993.Abstract
Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 +/- 1.3 in UBWOS 2013 and 2.0 +/- 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99 %). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH / acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that air-snow exchange processes and morning fog events may also contribute to ambient formic acid concentrations during UBWOS 2013 (similar to 20% in total). In total, 53-59 in UBWOS 2013 and 50-55% in CalNex of secondary formation of formic acid remains unexplained. More work on formic acid formation pathways is needed to reduce the uncertainties in the sources and budget of formic acid and to narrow the gaps between measurements and model results.
Warneke C, Veres P, Murphy SM, Soltis J, Field RA, Graus MG, Koss A, Li S-M, Li R, Yuan B, et al. PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013. ATMOSPHERIC MEASUREMENT TECHNIQUES. 2015;8:411-420.Abstract
Here we compare volatile organic compound (VOC) measurements using a standard proton-transfer-reaction quadrupole mass spectrometer (PTR-QMS) with a new proton-transfer-reaction time of flight mass spectrometer (PTR-TOF) during the Uintah Basin Winter Ozone Study 2013 (UBWOS2013) field experiment in an oil and gas field in the Uintah Basin, Utah. The PTR-QMS uses a quadrupole, which is a mass filter that lets one mass to charge ratio pass at a time, whereas the PTR-TOF uses a time of flight mass spectrometer, which takes full mass spectra with typical 0.1 s-1 min integrated acquisition times. The sensitivity of the PTR-QMS in units of counts per ppbv (parts per billion by volume) is about a factor of 10-35 times larger than the PTR-TOF, when only one VOC is measured. The sensitivity of the PTR-TOF is mass dependent because of the mass discrimination caused by the sampling duty cycle in the orthogonal-acceleration region of the TOF. For example, the PTR-QMS on mass 33 (methanol) is 35 times more sensitive than the PTR-TOF and for masses above 120 amu less than 10 times more. If more than 10-35 compounds are measured with PTR-QMS, the sampling time per ion decreases and the PTR-TOF has higher signals per unit measuring time for most masses. For UBWOS2013 the PTR-QMS measured 34 masses in 37 s and on that timescale the PTR-TOF is more sensitive for all masses. The high mass resolution of the TOF allows for the measurements of compounds that cannot be separately detected with the PTR-QMS, such as oxidation products from alkanes and cycloalkanes emitted by oil and gas extraction. PTR-TOF masses do not have to be preselected, allowing for identification of unanticipated compounds. The measured mixing ratios of the two instruments agreed very well (R-2 >= 0.92 and within 20 %) for all compounds and masses monitored with the PTR-QMS.
Shephard MW, McLinden CA, Cady-Pereira KE, Luo M, Moussa SG, Leithead A, Liggio J, Staebler RM, Akingunola A, Makar P, et al. Tropospheric Emission Spectrometer (TES) satellite observations of ammonia, methanol, formic acid, and carbon monoxide over the Canadian oil sands: validation and model evaluation. ATMOSPHERIC MEASUREMENT TECHNIQUES. 2015;8:5189-5211.Abstract
The wealth of air quality information provided by satellite infrared observations of ammonia (NH3), carbon monoxide (CO), formic acid (HCOOH), and methanol (CH3OH) is currently being explored and used for a number of applications, especially at regional or global scales. These applications include air quality monitoring, trend analysis, emissions, and model evaluation. This study provides one of the first direct validations of Tropospheric Emission Spectrometer (TES) satellite-retrieved profiles of NH3, CH3OH, and HCOOH through comparisons with coincident aircraft profiles. The comparisons are performed over the Canadian oil sands region during the intensive field campaign (August-September, 2013) in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring (JOSM). The satellite/aircraft comparisons over this region during this period produced errors of (i) +0.08 +/- 0.25 ppbv for NH3, (ii) +7.5 +/- 23 ppbv for CO, (iii) +0.19 +/- 0.46 ppbv for HCOOH, and (iv) 1.1 +/- 0.39 ppbv for CH3OH. These values mostly agree with previously estimated retrieval errors; however, the relatively large negative bias in CH3OH and the significantly greater positive bias for larger HCOOH and CO values observed during this study warrant further investigation. Satellite and aircraft ammonia observations during the field campaign are also used in an initial effort to perform preliminary evaluations of Environment Canada's Global Environmental Multi-scale-Modelling Air quality and CHemistry (GEM-MACH) air quality modelling system at high resolution (2.5 +/- 2.5 km(2). These initial results indicate a model underprediction of similar to 0.6 ppbv (similar to 60 %) for NH3, during the field campaign period. The TES/model CO comparison differences are similar to+20 ppbv (similar to +20 %), but given that under these conditions the TES/aircraft comparisons also show a small positive TES CO bias indicates that the overall model underprediction of CO is closer to similar to 10% at 681 hPa (similar to 3 km) during this period.
2014
Edwards PM, Brown SS, Roberts JM, Ahmadov R, Banta RM, de Gouw JA, Dube WP, Field RA, Flynn JH, Gilman JB, et al. High winter ozone pollution from carbonyl photolysis in an oil and gas basin. NATURE. 2014;514:351+.Abstract
The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality(1) to the influence of increased methane leakage on climate(2), have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides(3,4) (NOx = NO + NO2) and volatile organic compounds(5-7) (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects(8). Recent observations in oil-and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter(9-13). Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C=O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.
Chu B, Liu Y, Li J, Takekawa H, Liggio J, Li S-M, Jiang J, Hao J, He H. Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in alpha-pinene photooxidation. ENVIRONMENTAL POLLUTION. 2014;193:88-93.Abstract
alpha-Pinene/NOx and alpha-pinene/HONO photooxidation experiments at varying humidity were conducted in smog chambers in the presence or absence of FeSO4 seed particles. FeSO4 seed particles decrease SOA mass as long as water was present on the seed particle surface, but FeSO4 seed particles have no decreasing effect on SOA under dryer conditions at 12% relative humidity (RH). The decreasing effect of FeSO4 seed particles on the SOA mass is proposed to be related to oxidation processes in the surface layer of water on the seed particles. Free radicals, including OH, can be formed from catalytic cycling of Fe2+ and Fe3+ in the aqueous phase. These radicals can react further with the organic products of alpha-pinene oxidation on the seed particles. The oxidation may lead to formation of smaller molecules which have higher saturation vapor pressures and favor repartitioning to the gas phase, and therefore, reduces SOA mass. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Wong JPS, Liggio J, Li S-M, Nenes A, Abbatt JPD. Suppression in droplet growth kinetics by the addition of organics to sulfate particles. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. 2014;119:12222-12232.Abstract
Aerosol-cloud interactions are affected by the rate at which water vapor condenses onto particles during cloud droplet growth. Changes in droplet growth rates can impact cloud droplet number and size distribution. The current study investigated droplet growth kinetics of acidic and neutral sulfate particles which contained various amounts and types of organic compounds, from model compounds (carbonyls) to complex mixtures (a-pinene secondary organic aerosol and diesel engine exhaust). In most cases, the formed droplet size distributions were shifted to smaller sizes relative to control experiments (pure sulfate particles), due to suppression in droplet growth rates in the cloud condensation nuclei counter. The shift to smaller droplets correlated with increasing amounts of organic material, with the largest effect observed for acidic seed particles at low relative humidity. For all organics incorporated onto acidic particles, formation of high molecular weight compounds was observed, probably by acid-catalyzed Aldol condensation reactions in the case of carbonyls. To test the reversibility of this process, carbonyl experiments were conducted with acidic particles exposed to higher relative humidity. High molecular weight compounds were not measured in this case and no shift in droplet sizes was observed, suggesting that high molecular weight compounds are the species affecting the rate of water uptake. While these results provide laboratory evidence that organic compounds can slow droplet growth rates, the modeled mass accommodation coefficient of water on these particles (alpha > 0.1) indicates that this effect is unlikely to significantly affect cloud properties, consistent with infrequent field observations of slower droplet growth rates.
Liu Y, Liggio J, Harner T, Jantunen L, Shoeib M, Li S-M. Heterogeneous OH Initiated Oxidation: A Possible Explanation for the Persistence of Organophosphate Flame Retardants in Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY. 2014;48:1041-1048.Abstract
Heterogeneous reactions between OH radicals and emerging flame retardant compounds coated on inert particles have been investigated. Organophosphate esters (OPEs) including triphenyl phosphate (TPhP), tris-2-ethylhexyl phosphate (TEHP), and tris-1,3-dichloro-2-propyl phosphate (TDCPP) were coated on (NH4)(2)SO4 particles and exposed to OH radicals in a photochemical flow tube at 298 K and (38.0 +/- 2.0) % RH. The degradation of these particle-bound OPEs was observed as a result of OH exposure, as measured using a Time-Of-Flight Aerosol Mass Spectrometer. The derived second-order rate constants for the heterogeneous loss of TPhP, TEHP, and TDCPP were (2.1 +/- 0.19) x 10(-12) (2.7 +/- 0.63) x 10(-12), and (9.2 +/- 0.92) x 10(-13) cm(3) molecule(-1) s(-1), respectively, from which approximate atmospheric lifetimes are estimated to be 5.6 (5.2-6.0), 4.3 (3.5-5.6), and 13 (11-14) days. Additional coating of the OPE coated particles with an OH radical active species further increased the lifetimes of these OPEs. These results represent the first reported estimates of heterogeneous reaction rate constants for these species. The results demonstrate that particle bound OPEs are highly persistent in the atmosphere with regard to OH radical oxidation, consistent with the assumption that OPEs can undergo medium or long-range transport, as previously proposed on the basis of field measurements. Finally, these results indicate that future risk assessment and transport modeling of emerging priority chemicals with semi- to low-volatility must consider particle phase heterogeneous loss. processes When evaluating environmental persistence.
Stroud CA, Liggio J, Zhang J, Gordon M, Staebler RM, Makar PA, Zhang J, Li S-M, Mihele C, Lu G, et al. Rapid organic aerosol formation downwind of a highway: Measured and model results from the FEVER study. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. 2014;119:1663-1679.Abstract
The Fast Evolution of Vehicle Emissions from Roadway (FEVER) study was undertaken to strategically measure pollutant gradients perpendicular to a major highway north of Toronto, Canada. A case study period was analyzed when there was an average perpendicular wind direction. Two independent, fast response measurements were used to infer rapid organic aerosol (OA) growth on a spatial scale from 34 m to 285 m at the same time as a decrease was observed in the mixing ratio of primary emitted species, such as CO2 and NOx. An integrated organic gas and particle sampler also showed that near the highway, the aerosol had a larger semivolatile fraction than lower volatile fraction, but over a relatively short distance downwind of the highway, the aerosol transformed to being more low volatile with the change being driven by both evaporation of semivolatile and production of lower volatile organic aerosol. A new 1-D column Lagrangian atmospheric chemistry model was developed to help interpret the measured increase in the OA/CO2 curve from 34 m to 285 m downwind of highway, where the refers to background-corrected concentrations. The model was sensitive to the assumptions for semivolatile organic compounds (SVOCs). Different combinations of SVOC emissions and background mixing ratios were able to yield similar model curves and reproduce the observations. Future measurements of total gas-phase SVOC in equilibrium with aerosol both upwind and downwind of the highway would be helpful to constrain the model.
Luo P, Ni H-G, Bao L-J, Li S-M, Zeng EY. Size Distribution of Airborne Particle-Bound Polybrominated Diphenyl Ethers and Its Implications for Dry and Wet Deposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY. 2014;48:13793-13799.Abstract
Size distribution of particles in part dictates the environmental behavior of particle-bound organic pollutants in the atmosphere. The present study was conducted to examine the potential mechanisms responsible for the distribution of organic pollutants in size fractionated particles and their environmental implications, using an e-waste recycling zone in South China as a case study. Size-fractionated atmospheric particles were collected at the heights of 1.5, 5, and 20 m near two residential apartments and analyzed for polybrominated diphenyl ethers (PBDEs). The concentrations of particle-bound SPBDE (sum of 18 PBDE congeners) were significantly greater at 5 and 20 m than those at 1.5 m. The size-fractionated distributions of airborne SPBDE displayed trimodal peaks in 0.10-0.18, 1.8-3.2, and 10-18 mu m at 1.5 m but only an unimodal peak in 1.0-1.8 mu m at 20 m height. Emission sources, resuspension of dust and soil, and volatility of PBDEs were important factors influencing the size distribution of particle-bound PBDEs. The dry deposition fluxes of particle-bound PBDE estimated from the measured data in the present study were approximately twice the estimated wet deposition fluxes, with a total deposition flux of 3000 ng m-2 d(-1). The relative contributions of particles to dry and wet deposition fluxes were also size-dependent, e.g., coarse (aerodynamic diameters (D-p) > 1.8 mu m) and fine (D-p < 1.8 mu m) particles dominated the dry and wet deposition fluxes of PBDEs, respectively.
Luo P, Bao L-J, Wu F-C, Li S-M, Zeng EY. Health Risk Characterization for Resident Inhalation Exposure to Particle-Bound Halogenated Flame Retardants in a Typical E-Waste Recycling Zone. ENVIRONMENTAL SCIENCE & TECHNOLOGY. 2014;48:8815-8822.Abstract
Inhalation of pollutants is an important exposure route for causing human health hazards, and inhalation exposure assessment must take into account particle size distribution because particle-bound pollutants are size-dependent. Such information is scarce, particularly for residents dwelling within e-waste recycling zones where abundant atmospheric halogenated flame retardants (HFRs) commonly used in electronic/electrical devices have been widely reported. Atmospheric size-fractioned particle samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor from an e-waste recycling zone in South China. The deposition efficiencies and fluxes of size-fractioned HFRs including polybrominated diphenyl ethers (PBDEs), alternative brominated flame retardants, and Dechlorane Plus in the human respiratory tract were estimated using the International Commission on Radiological Protection deposition model. The majority of HFRs was found to deposit in the head airways, with coarse particles (aerodynamic diameter (Dp) > 1.8 mu m) contributing the most (69-91%). Conversely, fine particles (Dp < 1.8 mu m) were dominant in the alveolar region (62-80%). The inhalation intake of PBDEs Within the e-waste recycling zone was 44 ng/d (95% confidence interval (CI): 30-65 ng/d), close to those through food consumption in non-e-waste recycling regions. The estimated total hazard quotient of particle-bound HFRs was 5.6 x 10(-4) (95% Cl: 3.8 x 10(-4)-8.8 x 10(-4)). In addition, incremental lifetime cancer risk induced by BDE-209 was 1.36 x 10(-10) (95% Cl: 7.3 x 10(-11)-2.3 x 10(-10)), much lower than the Safe Acceptable Range (1.0 x 10(-6)-1.0 x 10(-4)) established by the United States Environmental Protection Agency. These results indicate that the potential health risk from inhalation exposure to particle-bound HFRs for residents dwelling in the e-waste recycling zone was low.
Liu Y, Li S-M, Liggio J. Technical Note: Application of positive matrix factor analysis in heterogeneous kinetics studies utilizing the mixed-phase relative rates technique. ATMOSPHERIC CHEMISTRY AND PHYSICS. 2014;14:9201-9211.Abstract
The mixed-phase relative rates approach for determining aerosol particle organic heterogeneous reaction kinetics is often performed utilizing mass spectral tracers as a proxy for particle-phase reactant concentration. However, this approach may be influenced by signal contamination from oxidation products during the experiment. In the current study, the mixed-phase relative rates technique has been improved by combining a positive matrix factor (PMF) analysis with electron ionization aerosol mass spectrometry (unit-mass resolution), thereby removing the influence of m/z fragments from reaction products on the reactant signals. To demonstrate the advantages of this approach, the heterogeneous reaction between OH radicals and citric acid (CA) was investigated using a photochemical flow tube coupled to a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS). The measured heterogeneous rate constant (k(2)) of citric acid toward OH was (3.31 +/- 0.29) x10(-12) cm(3) molecule(-1) s(-1) at 298K and (30 +/- 3) % relative humidity (RH) and was several times greater than the results utilizing individual m/z fragments. This phenomenon was further evaluated for particulate-phase organophosphates (triphenyl phosphate (TPhP), tris-1,3-dichloro-2-propyl phosphate (TDCPP) and tris-2-ethylhexyl phosphate (TEHP)), leading to k(2) values significantly larger than previously reported. The results suggest that heterogeneous kinetics can be significantly underestimated when the structure of the products is highly similar to the reactant and when a non-molecular tracer is measured with a unit-mass resolution aerosol mass spectrometer. The results also suggest that the heterogeneous lifetime of organic aerosol in models can be overestimated due to underestimated OH uptake coefficients. Finally, a comparison of reported rate constants implies that the heterogeneous oxidation of aerosols will be dependent upon a number of factors related to the reaction system, and that a single rate constant for one system cannot be universally applied under all conditions.
Zhou S, Gonzalez L, Leithead A, Finewax Z, Thalman R, Vlasenko A, Vagle S, Miller LA, Li S-M, Bureekul S, et al. Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air-water interface and of the sea surface microlayer. ATMOSPHERIC CHEMISTRY AND PHYSICS. 2014;14:1371-1384.Abstract
Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acids (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air-seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) University of Colorado light-emitting diode cavity-enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas-phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive dicarbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78 %, 29 %, 4% and < 1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples.

Pages