An J, Chen Y, Qu Y, Chen Q, Zhuang B, Zhang P, Wu Q, Xu Q, Cao L, Jiang H, et al. An Online-coupled Unified Air Quality Forecasting Model System. Advance in Earth Sciences. 2018;33:445-454.
Huang R-J, Yang L, Cao J, Chen Y, Chen Q, Li Y, Duan J, Zhu C, Dai W, Wang K, et al. Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition and Light Absorption Properties. Environmental Science & Technology. 2018;52:6825-6833.
Huang R-J, Cao J, Chen Y, Yang L, Shen J, You Q, Wang K, Lin C, Xu W, Gao B, et al. Organosulfates in atmospheric aerosol: synthesis and quantitative analysis of PM2.5 from Xi’an, northwestern China. Atmos. Meas. Tech. 2018;11:3447-3456.
AbstractThe sources, formation mechanism and amount of organosulfates (OS) in atmospheric aerosol are not yet well understood, partly due to the lack of authentic standardsfor quantification. In this study, we report an improved robust procedure for the synthesis of organosulfates with different functional groups. Nine authentic organosulfate standards were synthesized and four standards (benzyl sulfate, phenyl sulfate, glycolic acid sulfate, and hydroxyacetone sulfate) were used to quantify their ambient concentrations. The authentic standards and ambient aerosol sampleswere analyzed using an optimized ultra performance liquid chromatography–electrospray ionization-tandem mass spectrometric method (UPLC–ESI–MS/MS). The recovery ranged from 80.4 to 93.2 %, the limits of detection and limits of quantification obtained were 1.1–16.7 and 3.4– 55.6 pgm-3, respectively. Measurements of ambient aerosol particle samples collected in winter 2013/2014 in urban Xi’an, northwestern China, show that glycolic acid sulfate (77.349.2 ngm-3/ is the most abundant species of the identified organosulfates followed by hydroxyacetone sulfate (1.30.5 ngm-3/, phenyl sulfate (0.140.09 ngm-3/,and benzyl sulfate (0.040.01 ngm-3/. Except for hydroxyacetone sulfate, which seems to form mainly from biogenic emissions in this region, the organosulfates quantified during winter in Xi’an show an increasing trend with an increase in the mass concentrations of organic carbon indicating their anthropogenic origin.
Huang R-J, Cheng R, Jing M, Yang L, Li Y, Chen Q, Chen Y, Yan J, Lin C, Wu Y, et al. Source-specific health risk analysis on particulate trace elements: Coal combustion and traffic emission as major contributors in wintertime Beijing. Environ. Sci. Technol. 2018:Availabe online.
Zhou W, Zhao J, Ouyang B, Mehra A, Xu W, Wang Y, Bannan TJ, Worrall SD, Priestley M, Bacak A, et al. Production of N2O5 and ClNO2 in summer in urban Beijing, China. Atmos. Chem. Phys. 2018;18:11581-11597.