Organic inorganic perovskite solar cells have seen tremendous developments in recent years. As a hole transport material, 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMe-TAD) is widely used in n-i-p perovskite solar cells. However, it may lead to the perovskite film degradation due to the dopant lithium bis-((trifluoromethyl)sulfonyl)amide (Li-TFSI), which has strong hydrophilicity. Cu9S5 is considered as a superior p-type transport material, which also has a favorable energy level matching with the highest occupied molecular orbital of Spiro-OMeTAD. Herein, a solution-processed organic-inorganic-integrated hole transport layer was reported, which is composed of the undoped Spiro-OMeTAD and Cu9S5 layer. Since there is no Li-TFSI doping, it is extremely conductive to the long-term stability of the solar cells. In the meantime, we proposed a method to adjust the lowest unoccupied molecular orbital (LUMO) of SnO2 via nitrogen implantation (N:SnO2). The LUMO of SnO2 can be tuned from -4.33 to -3.91 eV, which matches well with the LUMO of CH3NH3PbI3 (-3.90 eV), and thus helps to reduce hysteresis. The modified hole and electron transport layers were applied in n-i-p perovskite solar cells, which achieve a maximum power conversion efficiency (PCE) of 17.10 and 96% retention of PCE after 1200 h in air atmosphere without any encapsulation.
Marine aerosol particles are an important part of the natural aerosol systems and might have a significant impact on the global climate and biological cycle. It is widely accepted that truly pristine marine conditions are difficult to find over the ocean. However, the influence of continental and anthropogenic emissions on the marine boundary layer (MBL) aerosol is still less understood and non-quantitative, causing uncertainties in the estimation of the climate effect of marine aerosols. This study presents a detailed chemical characterization of the MBL aerosol as well as the source apportionment of the organic aerosol (OA) composition. The data set covers the Atlantic Ocean from 53 degrees N to 53 degrees S, based on four open-ocean cruises in 2011 and 2012. The aerosol particle composition was measured with a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), which indicated that sub-micrometer aerosol particles over the Atlantic Ocean are mainly composed of sulfates (50% of the particle mass concentration), organics (21 %) and sea salt (12 %). OA has been apportioned into five factors, including three factors linked to marine sources and two with continental and/or anthropogenic origins. The marine oxy-genated OA (MOOA, 16% of the total OA mass) and marine nitrogen-containing OA (MNOA, 16 %) are identified as marine secondary products with gaseous biogenic precursors dimethyl sulfide (DMS) or amines. Marine hydrocarbon-like OA (MHOA, 19 %) was attributed to the primary emissions from the Atlantic Ocean. The factor for the anthropogenic oxygenated OA (Anth-OOA, 19 %) is related to continental long-range transport. Represented by the combustion oxy-genated OA (Comb-OOA), aged combustion emissions from maritime traffic and wild fires in Africa contributed, on average, a large fraction to the total OA mass (30 %). This study provides the important finding that long-range transport was found to contribute averagely 49% of the submicron OA mass over the Atlantic Ocean. This is almost equal to that from marine sources (51 %). Furthermore, a detailed latitudinal distribution of OA source contributions showed that DMS oxidation contributed markedly to the OA over the South Atlantic during spring, while continental-related longrange transport largely influenced the marine atmosphere near Europe and western and central Africa (15 degrees N to 15 degrees S). In addition, supported by a solid correlation between marine tracer methanesulfonic acid (MSA) and the DMS-oxidation OA (MOOA, R-2>0.85), this study suggests that the DMS-related secondary organic aerosol (SOA) over the Atlantic Ocean could be estimated by MSA and a scaling factor of 1.79, especially in spring.
Abstract Aim We examined the effects of space, climate, phylogeny and species traits on module composition in a cross-biomes plant–hummingbird network. Location Brazil, except Amazonian region. Methods We compiled 31 local binary plant–hummingbird networks, combining them into one cross-biomes metanetwork. We conducted a modularity analysis and tested the relationship between species’ module membership with traits, geographical location, climatic conditions and range sizes, employing random forest models. We fitted reduced models containing groups of related variables (climatic, spatial, phylogenetic, traits) and combinations of groups to partition the variance explained by these sets into unique and shared components. Results The Brazilian cross-biomes network was composed of 479 plant and 42 hummingbird species, and showed significant modularity. The resulting six modules conformed well to vegetation domains. Only plant traits, not hummingbird traits, differed between modules, notably plants’ growth form, corolla length, flower shape and colour. Some modules included plant species with very restricted distributions, whereas others encompassed more widespread ones. Widespread hummingbirds were the most connected, both within and between modules, whereas widespread plants were the most connected between modules. Among traits, only nectar concentration had a weak effect on among-module connectivity. Main conclusions Climate and spatial filters were the main determinants of module composition for hummingbirds and plants, potentially related to resource seasonality, especially for hummingbirds. Historical dispersal-linked contingency, or environmental variations not accounted for by the explanatory factors here evaluated, could also contribute to the spatial component. Phylogeny and morphological traits had no unique effects on the assignment of species to modules. Widespread species showed higher within- and/or among-module connectivity, indicating their key role connecting biomes, and, in the case of hummingbirds, communities within biomes. Our results indicate that biogeography and climate not only determine the variation of modularity in local plant–animal networks, as previously shown, but also affect the cross-biomes network structure.
Fine particulate matter (PM2.5), largely composed of secondary organic aerosol (SOA), is currently one of the most intractable environmental problems in China. As crucial precursors for SOA, understanding the formation propensity of various volatile organic compound (VOC) species and sources is useful for pollution control. In this work, we estimated the SOA formation potential (SOAP) of anthropogenic VOC emissions based on an improved speciated VOC emission inventory and investigated its distribution in China. According to our estimates, toluene had the largest SOAP, followed by n-dodecane, m-/p-xylene, styrene, n-decane, and n-undecane, while passenger cars, chemical fiber manufacturing, asphalt paving, and building coating were the top five SOAP-contributing sources nationwide. The spatial distribution of SOAP in China shows a distinct pattern of high values in the southeast and low values in the northwest. Beijing–Tianjin–Hebei and surroundings, the Yangtze River Delta, Pearl River Delta, and Sichuan–Chongqing District were found to have the highest SOAP, particularly in urban areas. The major SOAP-contributing species and sources differed among these regions, which was attributed to local industrial and energy structures. Our results suggest that to mitigate PM2.5 pollution in China, more efficient SOAP-based control measures should be implemented instead of current emissions-based policies, and VOC control strategies should be adapted to local conditions.
Chongqing is the largest megacity in southwest China and has a mountainous and humid climate. Online measurements of 96 volatile organic compound (VOC) species were performed at the three sites JYS, CJZ, and NQ, which are located in the northern, central, and southern sections of the Chongqing urban district, respectively. The measurements were performed from August to September 2015, at a time interval of 1 h. The spatiotemporal variation of VOC sources in Chongqing was characterized by combining the positive matrix factorization (PMF) model with the online measurement data. The average total VOC mixing ratios of the CJZ, NQ, and JYS sites were 41.2, 34.1, and 23.0 ppbv, respectively. The mixing ratios of tracers of incomplete combustion, exhibited obvious bimodal profiles at the CJZ and NQ sites, whereas those at the JYS site exhibited little change throughout the day. Isoprene at the three sites followed a similar pattern of average diurnal variations in mixing ratios, with minimums before sunrise and maximums at noon. The dominant sources of acetaldehyde and acetone were secondary anthropogenic sourceand aged air mass transport, respectively, in the city of Chongqing. Seven sources were apportioned to the results of PMF calculation using spatiotemporal VOCs composition data. The Vehicle-related sources were the largest contributor at CJZ and NQ, contributing 44% and 37% of the total VOC mixing ratios, respectively, and exhibited clear diurnal variations. Aged background air, with 68% of total VOC emissions, dominated the VOC emissions at JYS. Solvent utilization was a very important contributor at NQ and coincided with the higher levels of aromatics. O3 formation was generally VOC-limited at NQ and CJZ, and was NOx-limited and transition region alternatively at JYS. Alkenes were important for the O3formation at CJZ, and both alkenes and aromatics were important for the O3 formation at NQ.
Background Due to the sustained increases in life expectancy over the past half century, the elderly today will receive supports from their children for a longer period than ever before. Therefore, understanding the spillover effects of children's socioeconomic status on parents' health becomes increasingly important for both scholars and policy makers.
Methods The Ordinary Least Squares regression is applied to the China Health and Retirement Longitudinal Study 2011, a national representative dataset including approximately 10 000 households and 17 600 middle-aged and elderly respondents. The Sobel test is used to examine the mediation role of social integration.
Results The elderly who have a cadre child reported better health (coefficient=0.1347; 95% CI 0.067 to 0.202), had fewer activities of daily living (ADLs) limitations (coefficient=−0.1289; 95% CI −0.216 to −0.042) and were more socially integrated (coefficient=0.2321; 95% CI 0.103 to 0.361). Such effects are mainly driven by the parents of higher-ranking cadres. For the parents of higher ranking cadres, the Sobel test suggests that 12.6% of the total effects on self-reported health and 21.9% of the total effects on ADL limitations are mediated by the increase in parents' social integration.
Conclusion The findings suggest positive spillover effects of children's political status on parents' health. The benefits of having a cadre child are at least equivalent to the rural–urban gap in health and even stronger for the parents of higher ranking cadres. One potential explanation for such spillover effects is that a child's political status can improve parents' community involvement and social interactions.
The take-up of water of aerosol particles plays an important role in heavy haze formation over North China Plain, since it is related with particle mass concentration, visibility degradation, and particle chemistry. In the present study, we investigated the size-resolved hygroscopic growth factor (HGF) of sub-micrometer aerosol particles (smaller than 350 nm) on a basis of 9-month Hygroscopicity-Tandem Differential Mobility Analyzer measurement in the urban background atmosphere of Beijing. The mean hygroscopicity parameter (kappa) values derived from averaging over the entire sampling period for particles of 50 nm, 75 nm, 100 nm, 150 nm, 250 nm, and 350 nm in diameters were 0.14 +/- 0.07, 0.17 +/- 0.05, 0.18 +/- 0.06, 0.20 +/- 0.07, 0.21 +/- 0.09, and 0.23 +/- 0.12, respectively, indicating the dominance of organics in the sub-micrometer urban aerosols. In the spring, summer, and autumn, the number fraction of hydrophilic particles increased with increasing particle size, resulting in an increasing trend of overall particle hygroscopicity with enhanced particle size. Differently, the overall mean it values peaked in the range of 75-150 nm and decreased for particles larger than 150 rim in diameter during wintertime. Such size-dependency of kappa in winter was related to the strong primary particle emissions from coal combustion during domestic heating period. The number fraction of hydrophobic particles such as freshly emitted soot decreased with increasing PM2.5 mass concentration, indicating aged and internal mixed particles were dominant in the severe particulate matter pollution. Parameterization schemes of the HGF as a function of relative humidity (RH) and particle size between 50 and 350 nm were determined for different seasons and pollution levels. The HGFs calculated from the parameterizations agree well with the measured FIGFs at 20-90% RH. The parameterizations can be applied to determine the hygroscopic growth of aerosol particles at ambient conditions for the area of Beijing (ultrafine and fine particles) and the North China plain (fine particles).
Retrieving standard sized core plugs to perform conventional geomechanical testing on organic rich shale samples can be very challenging. This is due to unavailability of inch-size core plugs or difficulties in the coring process. In order to overcome these issues, statistical grid nanoindentation method was applied to analyze mechanical properties of the Bakken. Then the Mori-Tanaka scheme was carried out to homogenize the elastic properties of the samples and upscale the nanoindentation data to the macroscale. To verify these procedures, the results were compared with unconfined compression test data. The results showed that the surveyed surface which was 300 μm ×300 μm is larger than the representative elementary area (REA) and can be used safely as the nanoindentation grid area. Three different mechanical phases and the corresponding percentages can be derived from the grid nanoindentation through deconvolution of the data. It was found that the mechanical phase which has the smallest mean Young's modulus represents soft materials (mainly clay and organic matter) while the mechanical phases with the largest mean Young's modulus denote hard minerals. The mechanical properties (Young's modulus and hardness) of the samples in X-1 direction (perpendicular to the bedding line) was measured smaller than X-3 direction (parallel to the bedding line) which reflected mechanical anisotropy. The discrepancy between the macromechanical modulus from the homogenization and unconfined compression test was less than 15% which was acceptable. Finally, we showed that homogenization provides more accurate upscaling results compared to the common averaging method.
Magnetite-mediated direct interspecies electron transfer (DIET) can facilitate syntrophic metabolism in natural microbial communities and also promote the performance of the engineered systems based on syntrophic interactions. In this study, the stimulatory effect of bare synthetic magnetite (Mt), humic acid coated magnetite, and SiO2 coated magnetite (Mt-SiO2) on DIET in defined co-cultures of Geobacter metallireducens/Geobacter sulfurreducens were studied. Magnetite coated with Aldrich humic acid (HA) and Elliott Soil humic acid (HAES), respectively, were prepared, and the two kinds of humic acid influenced the ability of Mt to promote syntrophic metabolism of the co-cultures in a similar way. When weight concentration was the same, pure humic acid presented the stimulatory effect on DIET similar to bare magnetite. However, the presence of HA coating on magnetite surface caused 50% and 61%, respectively, decrease in the rates of ethanol consumption (Re) and succinate production (Rs) in DIET processes. Pure HA in the same weight concentration as the HA coating in Mt-HA induced the similar metabolism rates as Mt-HA. In the Mt-HA mediated DIET, most electrons from ethanol metabolism were transferred to G. sulfurreducens selectively through the HA coating, and magnetite core hardly contributed to DIET processes. The SiO2 coating on magnetite resulted in 81% and 89%, respectively, decreases in Re and Rs, mainly because the non-conductive SiO2 layer hindered electron transfer between magnetite core and bacteria. After eight-day incubation with the co-cultures, bare magnetite nanoparticles formed relatively larger and more compact aggregates with cells than Mt-HA and Mt-SiO2, due to the different surface charge between bare and coated Mt. The generation of dissolved Fe(II) and HCl-extractable Fe(II) due to microbial reduction of magnetite by G. metallireducens and vivianite formation were observed along with DIET processes in all DIET experiments. Based on these results, different pathways of electron transfer in defined co-cultures of Geobacters with bare and coated magnetite nanoparticles were proposed. The findings in this study demonstrate the significant effects of surface properties on the ability of magnetite to stimulate DIET, which needs to be considered in order to comprehensively understand the role and mechanisms of mineral-mediated DIET in natural and engineered systems.
The catalytic reactivity of synthetic bare magnetite nanoparticles, activated carbon supported magnetite (AC-Mt), and graphene oxide supported magnetite (GO-Mt) for heterogeneous Fenton-like oxidation of methylene blue (MB) were compared, in order to investigate how the structural features of the support impact catalytic activity of the nanocomposites. The different effects of AC and GO on MB removal rate, hydroxyl radical ([radical dot]OH) production, iron leaching, and surface deactivation have been systematically studied. The rate constant of MB removal by AC-Mt was 0.1161 min-1, one order of magnitude larger than the value of bare magnetite nanoparticles (0.0566 min-1). The higher catalytic activity of AC-Mt might be attributed to the larger reactive surface area of well-dispersed magnetite for [radical dot]OH production and the recharge of the magnetite surface by the AC support via Fe-O-C bonds. However, the removal rate of MB by GO-Mt was one order of magnitude slower than that of bare magnetite nanoparticles under the same experimental conditions, presumably due to the wrapping of GO around magnetite nanoparticles or extensive aggregation of GO-Mt composites. These findings revealed the significant influence of support structure on the catalytic activity of carbon-supported magnetite nanocomposites, which is important for the development of efficient magnetite-based catalysts for wastewater treatments.