Recently, perovskite solar cells have attracted tremendous research interest due to their amazing light to electric power conversion efficiency (PCE). However, most high performance devices usually use mesoporous TiO2 as the electron transport layer (ETL), which increases cost for practical application. Here, TiO2/SnOxCly double layer was employed as the ETL for planar perovskite solar cells. Compared with bare TiO2, perovskite solar cell based on TiO2/SnOxCly shows drastically improved power conversion efficiency and reduced hysteresis. These improvements are attributed to TiO2/SnOxCly which could enhance electron extraction and reduce surface trap-state. (C) 2017 Elsevier B.V. All rights reserved.
Tobacco smoking is a preventable environmental factor that contributes to a wide spectrum of age-related health outcomes; however, its association with the development of frailty is not yet well established. We examined the associations of self-reported smoking indicators, serum cotinine levels and smoking-related DNA methylation biomarkers with a quantitative frailty index (FI) in 2 independent subsets of older adults (age 50-75) recruited in Saarland, Germany in 2000 - 2002 (discovery set: n = 978, validation set: n = 531). We obtained DNA methylation profiles in whole blood samples by Illumina HumanMethylation450 BeadChip and calculated the FI according to the method of Mitnitski and Rockwood. Mixed linear regression models were implemented to assess the associations between smoking indicators and the FI. After controlling for potential covariates, current smoking, cumulative smoking exposure (pack-years), and time after smoking cessation (years) were significantly associated with the FI (P-value < 0.05). In the discovery panel, 17 out of 151 previously identified smoking-related CpG sites were associated with the FI after correction for multiple testing (FDR < 0.05). Nine of them survived in the validation phase and were designated as frailty-associated loci. A smoking index (SI) based on the 9 loci manifested a monotonic association with the FI. In conclusion, this study suggested that epigenetic alterations could play a role in smoking-associated development of frailty. The identified CpG sites have the potential to be prognostic biomarkers of frailty and frailty-related health outcomes. Our findings and the underlying mechanisms should be followed up in further, preferably longitudinal studies.
We investigate the spin–orbit coupling effect in a two-dimensional (2D) Wigner crystal. It is shown that sufficiently strong spin–orbit coupling and an appropriate sign of g-factor could transform the Wigner crystal to a topological phonon system. We demonstrate the existence of chiral phonon edge modes in finite size samples, as well as the robustness of the modes in the topological phase. We explore the possibility of realizing the topological phonon system in 2D Wigner crystals confined in semiconductor quantum wells/heterostructure. It is found that the spin–orbit coupling is too weak for driving a topological phase transition in these systems. It is argued that one may look for topological phonon systems in correlated Wigner crystals with emergent effective spin–orbit coupling.
Habitat is of great importance in, determining the trophic transfer of pollutants in freshwater ecosystems; however, the major factors influencing chemical trophodynamics in pelagic and benthic food webs remain unclear. This study investigated the levels of p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), polycyclic aromatic hydrocarbons (PAHs), 3 and substituted PAHs (s-PAHs) in 2 plankton species, 6 invertebrate species, and 10 fish species collected from Lake Dianchi in southern China. Relatively high concentrations of PAHs and s-PAHs were detected with total concentrations of 11.4-1400 ng/g wet weight (ww) and 5.3-115 ng/g ww, respectively. Stable isotope analysis and stomach content analysis were applied to quantitatively determine the trophic level of individual organisms and discriminate between pelagic and benthic pathways, and the trophodynamics of the detected compounds in the two food webs were assessed. P,p'-DDE was found to exhibit relatively higher trophic magnification rate in the pelagic food web than in the benthic food web. In contrast, PAHs and s-PAHs exhibited greater dilution rates along the trophic levels in the pelagic food web. The lower species differences of pollutants accumulated in benthic organisms compared to pelagic organisms is attributable to extra uptake via ingested sediment in benthos. The average uptake proportions of PAHs and s-PAHs via ingested sediment in benthic biotas were estimated to be 31-77%, and that of p,p'-DDE was 46%. The uptake routes are of importance for assessing the trophic magnification potentials of organic pollutants, especially in eutrophic freshwater ecosystems.
In this investigation, the two-dimensional (2D) self-assembly nanostructures of a series of cyclic oligo(phenylene-ethynylene) (OPE) molecules (L1, L2-6 and L2-12) at the 1-phenyloctane/highly oriented pyrolytic graphite (HOPG) interface were thoroughly studied using scanning tunneling microscopy (STM). Comparative STM studies with their triangular Pt(II) diimine complexes (C1, C2-6 and C2-12) were also carried out. Based on careful measurements on single molecule level STM images and density functional theory (DFT) calculations, the formation mechanisms of the nanoarrays formed were revealed.
Two-dimensional metallic transition metal dichalcogenides are emerging as prototypes for uncovering fundamental physical phenomena, such as superconductivity and charge-density waves, as well as for engineering-related applications. However, the batch production of such envisioned transition metal dichalcogenides remains challenging, which has hindered the aforementioned explorations. Herein, we fabricate thickness-tunable tantalum disulfide flakes and centimetre-sized ultrathin films on an electrode material of gold foil via a facile chemical vapour deposition route. Through temperature-dependent Raman characterization, we observe the transition from nearly commensurate to commensurate charge-density wave phases with our ultrathin tantalum disulfide flakes. We have obtained high hydrogen evolution reaction efficiency with the as-grown tantalum disulfide flakes directly synthesized on gold foils comparable to traditional platinum catalysts. This work could promote further efforts for exploring new efficient catalysts in the large materials family of metallic transition metal dichalcogenides, as well as exploiting their applications towards more versatile applications.