Electronic waste (e-waste) has created a worldwide environmental and health problem, by generating a diverse group of hazardous compounds such as persistent organic pollutants (POPs). Our previous studies demonstrated that populations from e-waste exposed region have a significantly higher level of chromosomal aberrancy and incidence of DNA damage. In this study, we further demonstrated that various POPs persisted at a significantly higher concentration in the exposed group than those in the unexposed group. The level of reactive oxygen species and micronucleus rate were also significantly elevated in the exposed group. RNA sequencing analysis revealed 31 genes in DNA damage responses and repair pathways that were differentially expressed between the two groups (Log 2 ratio > 1 or < -1). Our data demonstrated that both females and males of the exposed group have activated a series of DNA damage response genes; however many important DNA repair pathways have been dysregulated. Expressions of NEIL1/3 and RPA3, which are critical in initiating base pair and nucleotide excision repairs respectively, have been downregulated in both females and males of the exposed group. In contrast, expression of RNF8, an E3 ligase involved in an error prone non-homologous end joining repair for DNA double strand break, was upregulated in both genders of the exposed group. The other genes appeared to be differentially expressed only when the males or females of the two groups were compared respectively. Importantly, the expression of cell cycle regulatory gene CDC25A that has been implicated in multiple kinds of malignant transformation was significantly upregulated among the exposed males while downregulated among the exposed females. In conclusion, our studies have demonstrated significant correlations between e-waste disposing and POPs accumulation, DNA lesions and dysregulation of multiple DNA damage repair mechanisms in the residents of the e-waste exposed region. (C) 2014 Elsevier Inc. All rights reserved.
Meteorological trend analysis is a useful tool for understanding climate change and can provide useful information on the possibility of future change. Lake Dianchi is the sixth largest freshwater body in China with serious eutrophication. Algal blooms outbreak was proven to be closely associated with some climatic factors in Lake Dianchi. It is therefore essential to explore the trends of climatic time series to understand the mechanism of climate change on lake eutrophication. We proposed an integrated method of Mann-Kendall (MK) test, seasonal-trend decomposition using locally weighted regression (LOESS) (STL), and regime shift index (RSI) to decompose the trend analysis and identify the stable and abrupt changes of some climate variables from 1951 to 2009. The variables include mean air temperature (Tm), maximum air temperatures (Tmax), minimum air temperatures (Tmin), precipitation (Prec), average relative humidity (Hum), and average wind speed (Wind). The results showed that (a) annual Tm, Tmax, and Tmin have a significant increasing trend with the increasing rates of 0.26, 0.15and 0.43 A degrees C per decade, respectively; (b) annual precipitation has an insignificant decreasing trend with the decreasing rate of 3.17 mm per decade; (c) annual Hum has a significant decreasing trend in all seasons; and (d) there are two turning points for temperature rise around 1980 and 1995 and two abrupt change periods for precipitation with the extreme points appearing in 1963 and 1976. Temperature rise and precipitation decline in summer and autumn as well as wind speed decrease after the 1990s may be an important reason for algal blooms outbreak in Lake Dianchi. This study was expected to provide foundation and reference for regional water resource management.
Atmospheric particle size distribution of polycyclic aromatic hydrocarbons (PAHs) in a typical e-waste recycling zone and an urban site (Guangzhou) in southern China featured a unimodal peak in 0.56 -1.8 mu m for 4-6 ring PAHs but no obvious peak for 2-3 ring PAHs at both sites. The atmospheric deposition fluxes of PAHs were estimated at 5.4 +/- 2.3 mu g m(-2) d(-1) in the e-waste recycling zone and 3.1 +/- 0.6 mu g m(-2) d(-1) in Guangzhou. In addition, dry and wet deposition fluxes of PAHs were dominated by coarse (D-p > 1.8 mu m) and fine particles (D-p < 1.8 mu m), respectively. Fine particles predominated the deposition of PAHs in the lung. The results estimated by incremental inhalation cancer risk suggested that particle-bound PAHs posed serious threat to human health within the e-waste recycling zone and Guangzhou. (C) 2015 Elsevier Ltd. All rights reserved.
In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Abstract Modernization has been regarded as the best way to solve ecological and poverty problems in many arid and semi-arid areas around the world, but is inevitably accompanied by changes in land-use patterns that can lead to new socio-ecological feedbacks. How people and ecosystems of an area respond to such feedbacks determines whether the changes sustainable or not. In this paper, we describe resettlement of nomadic pastoralists in Alxa Left Banner of western Inner Mongolia. We identified the dominant biophysical limiting factor in this region (water resources), and used amount and efficiency of water use as indicators of the ecological impacts of pastoralism before and after resettlement. We also conducted semi-structured interviews with households to collect information about household income, expenditures, and agricultural production risks caused by water shortages to analyze the impacts of resettlement on their livelihood. We found that resettlement greatly increased the usage of water resources, reduced the efficiency of water use, and exacerbated regional water shortages. Although household income increased after settlement, subsistence costs also increased because water shortages increased production costs and risks. Our results suggest that in this arid grassland area of China, ecological resettlement policy is ecologically and economically unsustainable, and may exacerbate local ecological and social problems.
Fine particulate matter (PM2.5) is a significant health issue in Chinese megacities. However, little information is available regarding the PM2.5-bound toxic organics, especially their sources, atmospheric transformations, and health implications. In this study, we assessed the levels of polycyclic aromatic hydrocarbons (PAHs) and their nitrated, hydroxylated, and oxygenated derivatives (i.e., NPAHs, OHPAHs, and OPAHs, respectively) in PM2.5 collected in Beijing over a 1year period. The median concentration of 23 PAHs, 15 NPAHs, 16 OHPAHs, and 7 OPAHs in PM2.5 was 53.8, 1.14, 1.40, and 3.62ngm(-3), respectively. Much higher concentrations and mass percentages for all species were observed in the heating season, indicating a higher toxicity of PM2.5 during this period of time. Positive matrix factorization was applied to apportion the sources of PAHs and their derivatives. It was found that traffic emissions in the nonheating season, and coal combustion and biomass burning in the heating season, were the major primary sources of PAHs and their derivatives. Secondary formation, however, contributed significantly to the derivatives of PAHs (especially NPAHs and OPAHs) in the nonheating season, suggesting significant impacts of atmospheric transformation on the toxicity of PM2.5.
Much effort has been made for reducing nitrous oxide (N2O) emission in wastewater treatment processes. This paper presents an interesting way to minimize N2O in aerobic denitrification by strain Pseudomonas stutzeri PCN-1 with help of corn flour as cheaper additional carbon source. Experimental results showed that maximal N2O accumulation by strain PCN-1 was only 0.02% of removed nitrogen if corn flour was used as sole carbon source, which was significantly reduced by 52.07-99.81% comparing with others such as succinate, glucose, acetate and citrate. Sustained release of reducing sugar from starch and continuous expression of nosZ coding for N2O reductase contributed to the special role of corn flour as the ideal carbon source for strain PCN-1. Further experiments in sequencing batch reactors (SBRs) demonstrated similarly efficient nitrogen removal with much less N2O emission due to synergy of the novel strain and activated sludge, which was then confirmed by quantitative PCR analysis. (C) 2015 Elsevier Ltd. All rights reserved.