科研成果

2021
Mineral Scaling on Reverse Osmosis Membranes: Role of Mass, Orientation, and Crystallinity on Permeability
Wang M, Cao B, Hu Y*, Rodrigues DF*. Mineral Scaling on Reverse Osmosis Membranes: Role of Mass, Orientation, and Crystallinity on Permeability. Environmental Science & Technology [Internet]. 2021;55:16110-16119. LinkAbstract
Prior mineral scaling investigations mainly studied the effects of membrane surface properties rather than on the mineral properties and their impact on membrane permeability. In our study, mass, crystal growth orientation, and crystallinity of mineral precipitates on membranes, as well as their effects on membrane permeability have been investigated. Gypsum scaling tests on bare and bovine serum albumin (BSA)-conditioned membranes were conducted under different saturation indices. Results show that a longer scaling period was required for BSA-conditioned membranes to reach the same membrane permeate flux decline as bare membranes. Though the final reduced permeability was the same for both two membranes, the masses of the mineral precipitates on BSA-conditioned membranes were around two times more than those on bare membranes. Further mineral characterizations confirmed that different permeability decay rates of both types of the membrane were attributed to the differences in growth orientations rather than amounts of gypsum precipitates. Moreover, BSA-conditioned layers with high carboxylic density and specific molecular structure could stabilize bassanite and disrupt the oriented growth to inhibit the formation of needle-like gypsum crystals as observed on bare membranes, thus resulting in lower surface coverage with scales on membranes and alleviating the detrimental scaling effect on membrane permeability.
Yang W, Liu W, Wang X, Li Z, Zhan F, Zhang G, Wei X. A Miniature Ionization Vacuum Sensor With a SiOₓ-Based Tunneling Electron Source. IEEE Transactions on Electron Devices. 2021;68:5127-5132.
Sun J, Yuan X, Tsunoda T, Vedral V, Benjamin SC, Endo S. Mitigating realistic noise in practical noisy intermediate-scale quantum devices. Physical Review Applied. 2021;15(3):034026.
Ma R, Li K, Guo Y, Zhang B, Zhao X, Linder S, Guan CH, Chen G, Gan Y, Meng J. Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nature Communications [Internet]. 2021;12:6308. pdfAbstract
Ammonia (NH3) emissions, mainly from agricultural sources, generate substantial health damage due to the adverse effects on air quality. NH3 emission reduction strategies are still far from being effective. In particular, a growing trade network in this era of globalization offers untapped emission mitigation potential that has been overlooked. Here we show that about one-fourth of global agricultural NH3 emissions in 2012 are trade-related. Globally they induce 61 thousand PM2.5-related premature mortalities, with 25 thousand deaths associated with crop cultivation and 36 thousand deaths with livestock production. The trade-related health damage network is regionally integrated and can be characterized by three trading communities. Thus, effective cooperation within trade-dependent communities will achieve considerable NH3 emission reductions allowed by technological advancements and trade structure adjustments. Identification of regional communities from network analysis offers a new perspective on addressing NH3 emissions and is also applicable to agricultural greenhouse gas emissions mitigation.
Wu H, Fu P, Frone Z, White MD, Ajo-Franklin JB, Morris JP, Knox HA, Schwering PC, Strickland CE, Roberts BQ, et al. Modeling heat transport processes in enhanced geothermal systems: Validation at EGS Collab Experiment 1. Geothermics [Internet]. 2021;97:102254. 访问链接
WANG Y, Wang Y. Modeling Study of Power-on and Power-off System-level Electrostatic Discharge Protection. IEEE Transactions on Electromagnetic Compatibility [Internet]. 2021;63(4):979-987. 访问链接Abstract
System efficient electrostatic discharge (ESD) design is an effective method for simulating the ESD behaviors of a system. Based on this simulation method, this article mainly investigates the transient behaviors of a system-level ESD protection circuit with and without a 2.5 V power supply. During power-ON state, latch-up levels of a feedback power clamp protected by off-chip elements are predicted and mainly analyzed under machine model stress. During power-OFF state, the physical failure of a hybrid-triggered power clamp under surge stress is investigated. In addition to the utilization of transmission line pulsing (TLP) I-V curves, transient TLP waveforms are also used for building the component modelsin the system-level ESD protection circuit. Moreover, the relevant measurements for the power-ON state and power-OFF state areincluded in this article for verifying the simulation results. For ESD designers, this article provides a complete modeling and analysisprocess of co-design protection circuit to investigate the electrical behaviors.
Wang X, Li L, Gong K, Mao J, Hu J, Li J, Liu Z, Liao H, Qiu W, Yu Y, et al. Modelling air quality during the EXPLORE-YRD campaign – Part I. Model performance evaluation and impacts of meteorological inputs and grid resolutions. Atmospheric EnvironmentAtmospheric EnvironmentAtmospheric Environment. 2021;246.Abstract
The EXPeriment on the eLucidation of the atmospheric Oxidation capacity and aerosol foRmation and their Effects in the Yangtze River Delta (EXPLORE-YRD) campaign was carried out between May and June 2018 at a regional site in Taizhou, China. The EXPLORE-YRD campaign helped construct a detailed air quality model to understand the formation of O3 and PM2.5 further, identify the key sources of elevated air pollution events, and design efficient emission control strategies to reduce O3 and PM2.5 pollution in YRD. In this study, we predicted the air quality during the EXPLORE-YRD campaign using the Weather Research and Forecasting/Community Multiscale Air Quality modelling system (WRF/CMAQ) and evaluated model performance on O3 and PM2.5 concentrations and compositions. Air quality was predicted using two sets of reanalysis data—NCEP Final (FNL) Operational Global Analysis and ECMWF Reanalysis v5.0 (ERA5)—and three horizontal resolutions of 36, 12, and 4 km. The results showed that PM2.5 concentration was generally under-predicted using both the FNL and ERA5 data. ERA5 yielded slightly higher PM2.5 predictions during the EXPLORE-YRD campaign. Both reanalysis data sets under-predicted the high PM2.5 pollution processes on 29–30 May 2018, indicating that reanalysis data is not essential for under-predicting extreme PM2.5 pollution processes. The performance of O3 was similar in both the reanalysis data sets, because O3 is mostly sensitive to temperature predictions and FNL and ERA5 yielded similar temperature results. Although the average performance of PM2.5 and O3 predictions yielded by FNL and ERA5 was similar, large differences were observed in certain locations on specific days (e.g. in Hangzhou between 29 May and June 6, 2018 and in Hefei on 1–3 June 2018). Therefore, the choice of reanalysis data could be an important factor affecting the predictions of PM2.5 and O3, depending on locations and episodes. Comparable results were obtained using predictions with different horizontal resolutions, indicating that grid resolution was not crucial for determining the model performance of both PM2.5 and O3 during the campaign. © 2020 Elsevier Ltd
Wang X, Li L, Gong K, Mao J, Hu J, Li J, Liu Z, Liao H, Qiu W, Yu Y, et al. Modelling air quality during the EXPLORE-YRD campaign – Part I. Model performance evaluation and impacts of meteorological inputs and grid resolutions. Atmospheric EnvironmentAtmospheric EnvironmentAtmospheric Environment. 2021;246.Abstract
The EXPeriment on the eLucidation of the atmospheric Oxidation capacity and aerosol foRmation and their Effects in the Yangtze River Delta (EXPLORE-YRD) campaign was carried out between May and June 2018 at a regional site in Taizhou, China. The EXPLORE-YRD campaign helped construct a detailed air quality model to understand the formation of O3 and PM2.5 further, identify the key sources of elevated air pollution events, and design efficient emission control strategies to reduce O3 and PM2.5 pollution in YRD. In this study, we predicted the air quality during the EXPLORE-YRD campaign using the Weather Research and Forecasting/Community Multiscale Air Quality modelling system (WRF/CMAQ) and evaluated model performance on O3 and PM2.5 concentrations and compositions. Air quality was predicted using two sets of reanalysis data—NCEP Final (FNL) Operational Global Analysis and ECMWF Reanalysis v5.0 (ERA5)—and three horizontal resolutions of 36, 12, and 4 km. The results showed that PM2.5 concentration was generally under-predicted using both the FNL and ERA5 data. ERA5 yielded slightly higher PM2.5 predictions during the EXPLORE-YRD campaign. Both reanalysis data sets under-predicted the high PM2.5 pollution processes on 29–30 May 2018, indicating that reanalysis data is not essential for under-predicting extreme PM2.5 pollution processes. The performance of O3 was similar in both the reanalysis data sets, because O3 is mostly sensitive to temperature predictions and FNL and ERA5 yielded similar temperature results. Although the average performance of PM2.5 and O3 predictions yielded by FNL and ERA5 was similar, large differences were observed in certain locations on specific days (e.g. in Hangzhou between 29 May and June 6, 2018 and in Hefei on 1–3 June 2018). Therefore, the choice of reanalysis data could be an important factor affecting the predictions of PM2.5 and O3, depending on locations and episodes. Comparable results were obtained using predictions with different horizontal resolutions, indicating that grid resolution was not crucial for determining the model performance of both PM2.5 and O3 during the campaign. © 2020 Elsevier Ltd
Li L, Hu J, Li J, Gong K, Wang X, Ying Q, Qin M, Liao H, Guo S, Hu M, et al. Modelling air quality during the EXPLORE-YRD campaign – Part II. Regional source apportionment of ozone and PM2.5. Atmospheric EnvironmentAtmospheric EnvironmentAtmospheric Environment. 2021;247.Abstract
A source-oriented Community Multiscale Air Quality model was used to quantify the contributions of different sources to ground-level fine particulate matter (PM2.5) and ozone (O3) over the Yangtze River Delta (YRD) region during the EXPLORE-YRD (EXPeriment on the eLucidation of the atmospheric Oxidation capacity and aerosol foRmation, and their Effects in the Yangtze River Delta) campaign (17 May to June 17, 2018). O3 formation in most urban areas of YRD is attributed to volatile organic compounds (VOCs) (81.1%, 78.5%, 60.2%, and 55.1% in Shanghai, Nanjing, Hefei, and Hangzhou, respectively), but is affected more by nitrogen oxides (NOx) in suburban and rural areas. Industry and transportation are the two major sources of O3 and PM2.5. In addition to the two sources, NOx produced owing to power generation, and VOC emissions from biogenic sources are important source of O3. Industry contributes the most to the total mass of PM2.5 in the YRD during the study period (9–25 μg/m3), followed by transportation (2–7 μg/m3). Industry, residential emissions, and transportation are the major sources of primary organic carbon and elemental carbon, whereas industry, transportation, and power generation account for most of the sulphate (SO2− 4) and nitrate (NO− 3) in the YRD. Agriculture is the most dominant source of ammonium emissions (NH+ 4). In Shanghai, Nanjing, Hefei, and Taizhou, secondary organic aerosol (SOA) are mainly contributed by industrial emissions. However, in Hangzhou, biogenic emissions contribute more than 40% of SOA. During all types of pollution episodes, industry and transportation are generally the two greatest sources of O3 and PM2.5 in YRD. The contribution of industry is higher during high PM2.5 pollution episodes, whereas biogenic and open burning contributions are more important during high O3 episodes. Overall, anthropogenic sources dominate the formation of O3 and PM2.5 pollution in the YRD, whereas biogenic emissions contribute significantly to O3 attributable to VOC emissions (O3_VOCs) accounting for 9–20% in urban areas of the YRD. © 2021 Elsevier Ltd
Tatematsu K'ichi, Kim G, Liu T, Evans, Neal J. II, Yi H-weon, Lee J-E, Wu Y, Hirano N, Liu S-Y, Dutta S, et al. Molecular Cloud Cores with High Deuterium Fractions: Nobeyama Mapping Survey. \apjs. 2021;256:25.
Tang LZ, Shang DJ, Fang X, Wu ZJ, Qiu YT, Chen SY, Li X, Zeng LM, Guo S, Hu M*. More Significant Impacts From New Particle Formation on Haze Formation During COVID-19 Lockdown. Geophysical Research Letters [Internet]. 2021;48(8): e2020GL091591. 访问链接
Tang L, Shang D, Fang X, Wu Z, Qiu Y, Chen S, Li X, Zeng L, Guo S, Hu M. More Significant Impacts From New Particle Formation on Haze Formation During COVID-19 Lockdown. Geophysical Research LettersGeophysical Research LettersGeophysical Research Letters. 2021;48.Abstract
During the COVID-19 lockdown in 2020, large-scale industrial and transportation emissions were reduced, but high PM2.5 concentration still occurred. This study investigated the variation of particle number size distribution during the lockdown, and analyzed the characteristics of new particle formation (NPF) events and its potential impact on haze formation. Through measurement conducted in urban Beijing during the first 3 months of 2020, and comparison with year-over-year data, the decrease of primary Aitken-mode particles was observed. However, frequencies, formation rates and growth rates of NPF events remained stable between 2020 and 2019 in the same period. As a result, >25 nm particles produced by NPF events, would play a more important role in serving as the haze formation “seeds” compared to those produced by primary emissions. This finding emphasizes the significance on the understanding of NPF mechanisms when making pollution mitigation policy in the future. © 2021. The Authors.
Wang K, Ge Y. MST: Minimum Spanning Tree algorithm for identifying large-scale filaments. 2021.
Xu ZN, Nie W, Liu YL, Sun P, Huang DD, Yan C, Krechmer J, Ye PL, Xu Z, Qi XM, et al. Multifunctional Products of Isoprene Oxidation in Polluted Atmosphere and Their Contribution to SOA. Geophysical Research LettersGeophysical Research Letters. 2021;48.
Cheng X, Wang Z, Yang X, Xu L, Liu Y. Multi-scale detection and interpretation of spatio-temporal anomalies of human activities represented by time-series. Computers, Environment and Urban Systems [Internet]. 2021;88. 访问链接
Zhu D, Cheng C, Zhai W, Li Y, Li S, Chen B. Multiscale Spatial Polygonal Object Granularity Factor Matching Method Based on BPNN. ISPRS International Journal of Geo-Information. 2021;10(2):75.
Guo H, Li X, Yang W, Yao Z, Mei Y, Peng LE, Yang Z, Shao S, Tang CY. Nanofiltration for drinking water treatment: a review. Frontiers of Chemical Science and Engineering. 2021:1–18.
Yi Y, Li J, Lai X, Zhang M, Kuang Y, Bao Y-O, Yu R, Hong W, Muturi E, Xue H, et al. Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. J Adv Res . [Internet]. 2021;36:201-210. 访问链接Abstract
Introduction: The COVID-19 global epidemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) is a great public health emergency. Discovering antiviral drug candidates is urgent for the prevention and treatment of COVID-19. Objectives: This work aims to discover natural SARS-CoV-2 inhibitors from the traditional Chinese herbal medicine licorice. Methods: We screened 125 small molecules from Glycyrrhiza uralensis Fisch. (licorice, Gan-Cao) by virtual ligand screening targeting the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. Potential hit compounds were further evaluated by ELISA, SPR, luciferase assay, antiviral assay and pharmacokinetic study. Results: The triterpenoids licorice-saponin A3 (A3) and glycyrrhetinic acid (GA) could potently inhibit SARS-CoV-2 infection, with EC50 of 75 nM and 3.17 µM, respectively. Moreover, we reveal that A3 mainly targets the nsp7 protein, and GA binds to the spike protein RBD of SARS-CoV-2. Conclusion: In this work, we found GA and A3 from licorice potently inhibit SARS-CoV-2 infection by affecting entry and replication of the virus. Our findings indicate that these triterpenoids may contribute to the clinical efficacy of licorice for COVID-19 and could be promising candidates for antiviral drug development. Keywords: COVID-19; Glycyrrhetinic acid; Licorice; Licorice-saponin A3; SARS-CoV-2.
Qi YJ, Li WJ. A Nested Property Right System of the Commons: Perspective of Resource System-Units. Environmental Science & Policy [Internet]. 2021;115(1):1-7. 访问链接Abstract
The common pool resource (CPR) theory has made invaluable contributions to the governance of natural resources in the past decades, but few literatures have specifically paid attention to the different property right arrangements of resource system and resource units, and their relationship. In this paper, we take two types of grassland property right system on the Qinghai-Tibetan Plateau (QTP) in China, one is grassland contract system under that the previous grassland common use was given up and the other is grazing quota system under that the common use is still kept in the community level, as cases to present the different consequences on the ecological conditions, herders’ livelihoods and livestock husbandry. Furthermore, from the perspective of property rights of resource system-units, we explore why the two systems resulted in the different consequences. We find that the grazing quota system indicated by the number of livestock each household allowed to raise has more advantages in improving the herders’ livelihoods and reducing the livestock production costs, and both systems could alleviate the grazing pressure though the long-term effects of the contract system might be negative on ecological conditions. The main reason why the grazing quota system works better is that this type of individual use rights were clarified based on the resource units so the grassland could be kept common use as an integrated resource system, while the contract system was claimed by physically dividing the resource system by fencing, thus the resource system was fragmented which led to mismatch with the large scope movement needs of livestock grazing. We argue that, theoretically, the grazing quota system is a private property rights embedded in the grassland common property right system, which forms a nested property right regime. Our findings have important implications for both of the CPR theory and practical rangeland management worldwide.
Larson E, Greig C, Jenkins J, Mayfield E, Pascale A, Zhang C, Drossman J, Williams R, Pacala S, Socolow R, et al. Net-Zero America: Potential Pathways, Infrastructure, and Impacts. Princeton, NJ: Princeton University; 2021. 访问链接Abstract
A growing number of governments and companies are pledging net-zero emissions by 2050. For the US as a whole to achieve this requires eliminating or offsetting today's emission of ~6 billion tCO2e/year. There is a dearth of analysis for understanding requirements, costs, and impacts of this transition. The goal of this study is to help fill this gap by providing insights at visceral, human scales of how the nation will look following a pathway to net-zero and the localized benefits, costs, and impacts for different industries, professions, and communities. The analysis aims to inform debates on public and corporate policies needed to achieve net-zero, but specific policy recommendations are not offered.Energy service demands projected to 2050 by the EIA for 14 regions across the continental US provide the starting point for modeling. Five different pathways are constructed for meeting these demands by varying exogenously applied constraints to create the different pathways.End-use technologies to meet service demands are exogenously specified in 5-year time steps to determine final energy demands that must be delivered by the energy supply system. Pathways to net-zero emissions by 2050 are constructed by finding the energy supply mix that minimizes the 30-year NPV of total energy-system costs, subject to exogenous constraints. The model has perfect foresight and seamless integration between all sectors. These modeling results are “downscaled” to state or sub-state geographies to quantify local plant and infrastructure investments, construction activities, land-use, jobs, and health impacts, 2020 - 2050.

Pages