By engaging a compact asymmetric single slit coated with a photorefractive polymer, surface-plasmon-polariton (SPP) generation was efficiently controlled by a pump beam. In the structure, the nonlinear light-matter interaction is enhanced because of the cavity effect, which increases the sensitivity of SPPs to the surrounding dielectric. By variation of the real part of the refractive index together with an interferometric configuration, high on/off switching ratios are achieved. Moreover, the SPP generation and modulation processes are integrated in the same asymmetric single slit, which makes the device ultracompact. Experimentally, a high on/off switching ratio of > 20 dB and phase variation of >pi were observed with the device lateral dimension of only about 2 mu m.
Multi-year inventories of carbonaceous aerosol emissions from biomass open burning at a high spatial resolution of 0.5° × 0.5° have been constructed in China using GIS methodology for the period 1990–2005. Black carbon (BC) emissions have increased by 383.03% at an annual average rate of 25.54% from 14.05 Gg in 1990 to 67.87 Gg in 2005; while organic carbon (OC) emissions have increased by 365.43% from 57.37 Gg in 1990 to 267.00 Gg in 2005. Through the estimation period, OC/BC ratio for biomass burning was averagely 4.09, suggesting that it was not the preferred control source from a climatic perspective. Spatial distribution of BC and OC emissions were similar, mainly concentrated in three northeastern provinces, central provinces of Shandong, Jiangsu, Anhui and Henan, and southern provinces of Guangxi, Guangdong, Hunan and Sichuan basin, covering 24.89% of China’s territory, but were responsible for 63.38% and 67.55% of national BC and OC emissions, respectively.