科研成果

2018
Wang Y, Hu M, Guo S, Wang Y, Zheng J, Yang Y, Zhu W, Tang R, Li X, Liu Y, et al. The secondary formation of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing. Atmos. Chem. Phys. 2018;18:10693-10713.
Palm BB, de Sá SS, Day DA, Campuzano-Jost P, Hu W, Seco R, Sjostedt SJ, Park J-H, Guenther AB, Kim S, et al. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia. Atmospheric Chemistry and Physics [Internet]. 2018;18(1):467–493. Link
Su Z, Dai T, Tang Y, Tao Y, Huang B, Mu Q, Wen D. Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area. Marine Pollution Bulletin [Internet]. 2018;131:481-495. 访问链接Abstract
Coastal ecosystem structures and functions are changing under natural and anthropogenic influences. In this study, surface sediment samples were collected from disturbed zone (DZ), near estuary zone (NEZ), and far estuary zone (FEZ) of Hangzhou Bay, one of the most seriously polluted bays in China. The bacterial community structures and predicted functions varied significantly in different zones. Firmicutes were found most abundantly in DZ, highlighting the impacts of anthropogenic activities. Sediment total phosphorus was most influential on the bacterial community structures. Predicted by PICRUSt analysis, DZ significantly exceeded FEZ and NEZ in the subcategory of Xenobiotics Biodegradation and Metabolism; and DZ enriched all the nitrate reduction related genes, except nrfA gene. Seawater salinity and inorganic nitrogen, respectively as the representative natural and anthropogenic factor, performed exact-oppositely in nitrogen metabolism functions. The changes of bacterial community compositions and predicted functions provide a new insight into human-induced pollution impacts on coastal ecosystem.
Li D, Lu X, Yang X, Chen L, Lin L. Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: A case study of the Jinsha River. Geomorphology [Internet]. 2018;322:41-52. 访问链接
Liu X. W., Gap F. X., Zhang Y. Y. Seismic resolution enhancement in shale-oil reservoirs. Geophysics [Internet]. 2018:281–287. 访问链接
Shrestha N, Wang Z. Selecting priority areas for systematic conservation of Chinese Rhododendron: hotspot versus complementarity approaches. Biodiversity and ConservationBiodiversity and Conservation. 2018;27:3759-3775.Abstract
The use of quantitative measures to select priority areas for conservation has been in practice since the early 1980s. However, the relative efficiency of different methods for identifying priority areas is still the subject of debate. Here, using the distribution data of 556 Rhododendron species in China with high spatial resolution, we evaluated the performance of the two commonly used methods, i.e. hotspot and complementarity and selected the efficient method to select priority areas for the conservation of Rhododendron in China. By overlaying the priority areas map with the locations of protected areas, we also identified the regions not covered by current protected areas (i.e. conservation gaps). We found that the complementarity method selected less number of grid cells to capture an equivalent number of species and hence had higher efficiency and representativeness than the commonly used hotspot method. Moreover, the complementarity method was better at capturing the range-restricted species than the hotspot method. Based on the complementarity method, we identified 61 grid cells of 50 × 50 km as priority areas for Rhododendron conservation in China. Among these priority areas, only about 50% grid cells were located in the hotspot areas (e.g. Hengduan Mountains), and 14% grid cells were outside the current protected area network. Our findings suggest that, despite its popularity and ease of implementation, the sites selected by hotspot algorithm may not necessarily be the best sites to allocate conservation efforts. Since the identification of priority areas in China has largely been based on the hotspot method, the current study has revived the need to reassess the priority areas for other taxonomic groups too. More importantly, our findings have emphasized the need to expand the conservation priorities from Hengduan Mountains to south and southeast China as well.
Wu G, Li Z, Tang Z, Wei D, Zhang G, Chen Q, Peng L-M, Wei X. Silicon Oxide Electron-Emitting Nanodiodes. Advanced Electronic Materials [Internet]. 2018;4:1800136. 访问链接Abstract
Abstract Electrically driven on-chip electron sources that do not need to be heated are long pursued, but their realization remains challenging. Here, it is shown that a nanogap formed by two electrodes on a silicon oxide substrate functions as an electron-emitting nanodiode after the silicon oxide in the nanogap is electrically switched to a high-resistance conducting state. A nanodiode based on graphene electrodes can be turned on by a voltage of ≈7 V in ≈100 ns and show an emission current of up to several microamperes, corresponding to an emission density of ≈106 A cm−2 and emission efficiency as high as 16.6%. We attribute the electron emission to be generated from a metal–insulator–metal tunneling diode on the substrate surface formed by the rupture of conducting filaments in silicon oxide. An array of 100 nanodiodes exhibits a global emission density of 5 A cm−2 and stable emission with negligible current degradation over tens of hours under modest vacuum. The combined advantages of a low operating voltage, fast temporal response, high emission density and efficiency, convenient fabrication and integration, and stable emission in modest vacuum make silicon oxide electron-emitting nanodiodes a promising on-chip electron sources.
Zhou W-F, Chen J. Similarity model for corner roll in turbulent Rayleigh-Benard convection. Physics of FluidsPhysics of Fluids. 2018;30:111705.
Wang* S. Simplicity from complex interactions. Nature Ecology & Evolution (News & Views - Invited) [Internet]. 2018;2:1201-1202. 访问链接Abstract
Several recent theoretical studies develop tools to predict species diversity in large model ecosystems, setting a new benchmark for understanding the mechanism of species coexistence in natural ecosystems.
Chen X, Wang H, Lu K. Simulation of organic nitrates in Pearl River Delta in 2006 and the chemical impact on ozone production. Science China Earth Sciences. 2018;61(2):228-238.
Gou X, Zhao C, Yang T, Zou L, Zhou Y, Yan Y, Li X, Cui B. Single hash: Use one hash function to build faster hash based data structures, in IEEE BigComp.; 2018:278–285.
Wang D, Ma W, Bin J, Alinger K, Shou Y, Wang P, Liu J, Zhu J, Cao Z, Mei Z, et al. Single-shot laser-induced damage threshold of free-standing nanometer-thin diamond-like carbon foils. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms [Internet]. 2018;436:18-21. 访问链接Abstract
Single-shot laser-induced damage threshold (LIDT) of free-standing nanometer-thin diamond-like carbon (DLC) foils was measured in vacuum environment for pulse durations from 50 fs to 200 ps. It is found that, due to higher surface defects density, the LIDT of free-standing ultrathin DLC foils is lower than that of bulk DLC by a factor of 3, and the damage fluence is almost a constant of about 0.1 J/cm2 when the pulse duration is longer than 500 fs. Different from DLC films coated on silicon wafer, the damage fluence of free-standing DLC has a weak dependence on their thickness. Based on the measurement, the damage mechanism is illustrated by virtue of the carrier population analysis, and the requirement on the temporal laser contrast when DLC targets are used in relativistic laser-plasma experiment is discussed.
Zhao Y, Xiong S, Yang Y, Chen S. Sinuous distortion of vortex surfaces in the lateral growth of turbulent spots. Physical Review Fluids. 2018;7:1–16.Abstract
Author(s): Yaomin Zhao, Shiying Xiong, Yue Yang, and Shiyi ChenThere is a continued debate about the generation mechanism of turbulent spots in boundary-layer transition. We use the vortex-surface field to show that the sinuous distortion of vortex surfaces plays an important role in the rapid lateral growth of turbulent spots.[Phys. Rev. Fluids 3, 074701] Published Wed Jul 11, 2018
Wang S, Rodríguez-Escrich C, Fan X, Pericàs MA. A site isolation-enabled organocatalytic approach to enantiopure γ-amino alcohol drugs. TetrahedronTetrahedron. 2018;74:3943-3946.Abstract
Solid support-enabled site isolation has previously allowed to use paraldehyde as an acetaldehyde surrogate in aldol reactions. However, only electron-poor aldehydes were tolerated by the system. Herein, we show that the temporary conversion of benzaldehyde into η6-benzaldehyde Cr(CO)3 circumvents this limitation. Asymmetric synthesis of (R)-Phenoperidine, as well as formal syntheses of (R)-Fluoxetine and (R)-Atomoxetine, illustrate the benefits of this strategy.
Cheng Y, Li S-M, Gordon M, Liu P. Size distribution and coating thickness of black carbon from the Canadian oil sands operations. ATMOSPHERIC CHEMISTRY AND PHYSICS. 2018;18:2653-2667.Abstract
Black carbon (BC) plays an important role in the Earth's climate system. However, parameterizations of BC size and mixing state have not been well addressed in aerosol-climate models, introducing substantial uncertainties into the estimation of radiative forcing by BC. In this study, we focused on BC emissions from the oil sands (OS) surface mining activities in northern Alberta, based on an aircraft campaign conducted over the Athabasca OS region in 2013. A total of 14 flights were made over the OS source area, in which the aircraft was typically flown in a four-or five-sided polygon pattern along flight tracks encircling an OS facility. Another 3 flights were performed downwind of the OS source area, each of which involved at least three intercepting locations where the well-mixed OS plume was measured along flight tracks perpendicular to the wind direction. Comparable size distributions were observed for refractory black carbon (rBC) over and downwind of the OS facilities, with rBC mass median diameters (MMDs) between similar to 135 and 145 nm that were characteristic of fresh urban emissions. This MMD range corresponded to rBC number median diameters (NMDs) of similar to 60-70 nm, approximately 100% higher than the NMD settings in some aerosol-climate models. The typical in-and out-of-plume segments of a flight, which had different rBC concentrations and photochemical ages, showed consistent rBC size distributions in terms of MMD, NMD and the corresponding distribution widths. Moreover, rBC size distributions remained unchanged at different downwind distances from the source area, suggesting that atmospheric aging would not necessarily change rBC size distribution. However, aging indeed in-fluenced rBC mixing state. Coating thickness for rBC cores in the diameter range of 130-160 nm was nearly doubled (from similar to 20 to 40 nm) within 3 h when the OS plume was transported over a distance of 90 km from the source area.
Qiao K, Wu Z, Pei X, Liu Q, Shang D, Zheng J, Du Z, Zhu W, Wu Y, Lou S, et al. Size-resolved effective density of submicron particles during summertime in the rural atmosphere of Beijing, China. Journal of Environmental SciencesJournal of Environmental Sciences. 2018;73:69-77.Abstract
Particle density is an important physical property of atmospheric particles. The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical aging processes of aerosols particles. In the present study, a centrifugal particle mass analyzer (CPMA) combined with a differential mobility analyzer (DMA) was deployed to determine the size-resolved effective density of 50 to 350nm particles at a rural site of Beijing during summer 2016. The measured particle effective densities decreased with increasing particle sizes and ranged from 1.43 to 1.55g/cm3, on average. The effective particle density distributions were dominated by a mode peaked at around 1.5g/cm3 for 50 to 350nm particles. Extra modes with peaks at 1.0, 0.8, and 0.6g/cm3 for 150, 240, and 350nm particles, which might be freshly emitted soot particles, were observed during intensive primary emissions episodes. The particle effective densities showed a diurnal variation pattern, with higher values during daytime. A case study showed that the effective density of Aitken mode particles during the new particle formation (NPF) event decreased considerably, indicating the significant contribution of organics to new particle growth.
Qiao K, Wu ZJ, Pei XY, Liu QY, Shang DJ, Zheng J, Du ZF, Zhu WF, Wu YS, Lou SR, et al. Size-resolved effective density of submicron particles during summertime in the rural atmosphere of Beijing, China. Journal of Environmental Sciences. 2018;73:69-77.Abstract
Particle density is an important physical property of atmospheric particles. The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical aging processes of aerosols particles. In the present study, a centrifugal particle mass analyzer (CPMA) combined with a differential mobility analyzer (DMA) was deployed to determine the size-resolved effective density of 50 to 350 nm particles at a rural site of Beijing during summer 2016. The measured particle effective densities decreased with increasing particle sizes and ranged from 1.43 to 1.55 g/cm(3), on average. The effective particle density distributions were dominated by a mode peaked at around 1.5 g/cm(3) for 50 to 350 nm particles. Extra modes with peaks at 1.0, 0.8, and 0.6 g/cm(3) for 150, 240, and 350 nm particles, which might be freshly emitted soot particles, were observed during intensive primary emissions episodes. The particle effective densities showed a diurnal variation pattern, with higher values during daytime. A case study showed that the effective density of Aitken mode particles during the new particle formation (NPF) event decreased considerably, indicating the significant contribution of organics to new particle growth. (C) 2018 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
Jiang J, Fu F, Yang T, Cui B. Sketchml: Accelerating distributed machine learning with data sketches, in ACM SIGMOD 2018.; 2018:1269–1284.
Gao R, Ye F, Luo G, Cong J. Smartphone-Based Indoor Map Construction - Principles and Applications. Singapore: Springer Singapore; 2018. 访问链接
Han D, Wu C, Zhang Q, Wei S, Qi X, Zhao Y, Chen Y, Chen Y, Xiao L, Zhao Z. Solution-Processed Cu9S5 as a Hole Transport Layer for Efficient and Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES. 2018;10:31535-31540.Abstract
Organic inorganic perovskite solar cells have seen tremendous developments in recent years. As a hole transport material, 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMe-TAD) is widely used in n-i-p perovskite solar cells. However, it may lead to the perovskite film degradation due to the dopant lithium bis-((trifluoromethyl)sulfonyl)amide (Li-TFSI), which has strong hydrophilicity. Cu9S5 is considered as a superior p-type transport material, which also has a favorable energy level matching with the highest occupied molecular orbital of Spiro-OMeTAD. Herein, a solution-processed organic-inorganic-integrated hole transport layer was reported, which is composed of the undoped Spiro-OMeTAD and Cu9S5 layer. Since there is no Li-TFSI doping, it is extremely conductive to the long-term stability of the solar cells. In the meantime, we proposed a method to adjust the lowest unoccupied molecular orbital (LUMO) of SnO2 via nitrogen implantation (N:SnO2). The LUMO of SnO2 can be tuned from -4.33 to -3.91 eV, which matches well with the LUMO of CH3NH3PbI3 (-3.90 eV), and thus helps to reduce hysteresis. The modified hole and electron transport layers were applied in n-i-p perovskite solar cells, which achieve a maximum power conversion efficiency (PCE) of 17.10 and 96% retention of PCE after 1200 h in air atmosphere without any encapsulation.

Pages