Domain-general cognitive control is closely related to language control during bilingual language production. Previous neural imaging studies have revealed a highly overlapped but rewired brain network for language control and nonverbal cognitive control. In the present study, we examined this issue from a training perspective. Two groups of participants performed the language switching task at pre-and post-tests during functional magnetic resonance imaging (fMRI) scanning. After the pre-test, the experimental group received 8-day training in a non-verbal switching task, while the control group performed an unrelated color judgement task. We found that only the experimental group but not the control group showed decreased strength of connectivity from the ventral lateral frontal cortex to the left caudate nucleus and from the medial surface of the frontal lobe to the left thalamus. These results indicate an increased efficiency after nonverbal training for the frontal cortex to implement domain-general suppression and monitoring in a domain-specific conflict context during bilingual language and lexical selections. This study is the first to investigate the transfer effects of nonverbal cognitive control on the brain network of bilingual language control and shed light on the mechanisms of how domain-general cognitive control may underpin bilingual language control.
The efficiency and mechanism of heterogeneous catalytic O3 and UV/O3 for municipal solid waste (MSW) incineration leachate advanced treatment was systematically compared. Prior to comparison, catalyst used in heterogenous catalytic O3 and operation parameters for each technology were optimized. The COD removal of CuO@Al2O3/O3 under its optimal parameters was 57.2%, which failed to meet the standard (≥75%). In contrast, the COD removal by UV/O3 could be 82.3%. The superior efficiency of UV/O3 over CuO@Al2O3/O3 could be summarized into three aspects: (I) Cu bounded ·OH (≡Cu–O·) preferentially attacked hydrophilic groups, while free hydroxyl radical (·OH) was non-selective, thus UV/O3 exhibited a unique three-stage mechanism; (II) The oxidation potential of ≡Cu–O· was higher than that of ·OH, therefore was more vulnerable to the negative effect of radical self-quenching; (III) The existence of UV-induced excited states made organics in UV/O3 more active than in CuO@Al2O3/O3 system, thus high concentration of anions enhanced COD removal in UV/O3 but affected that in CuO@Al2O3/O3. The study further revealed the characteristics of heterogeneous catalytic O3 and UV/O3, and UV induced excited state should be considered in UV-based advanced oxidation processes (AOPs).
Measuring Chinese character recognition ability is essential in research on character learning by learners of Chinese as a second language (CSL). Three methods are typically used to evaluate character recognition competence by investigating the following properties of a given character: (a) pronunciation (phonological method), (b) meaning (semantic method), and (c) pronunciation and meaning (phonological & semantic or PS method). However, no study has explored the similar or dissimilar outcomes that these three measurements might yield. The current study examined this issue by testing 162 CSL learners with various L1 backgrounds and Chinese proficiency levels. Participants’ performances in character recognition measured using a phonological method, a semantic method, and a PS method were compared, which led to two major findings. In terms of similarity, participants’ performances in character recognition and the influence of L1 background and Chinese proficiency level on character recognition was similar across the three methods. As for differences, the semantic method could yield a character recognition test with better quality than the other two methods, and the three methods yielded different best fitting models and showed different prediction for Chinese proficiency across different L1 groups. Theoretical and practical implications of these findings are proposed.