This paper presents a 60 GHz phase shifter, based on a coplanar waveguide (CPW) transmission line, loaded with ferroelectric hafnium zirconium oxide (HZO) variable metal-insulator-metal (MIM) varactors, developed for the back-end-of-line (BEoL) on-chip integration. Using the measured data of capacitance-voltage (C-V) characteristics of HZO and implementing the method-of-moments simulation, it was shown, that by changing the bias voltage between 0.95 and -3 V, the device shows a phase shift of 111° and a minimum insertion loss of -5.84 dB at 60 GHz. The chip area of the device is 0.206 mm 2 , making it the smallest among non-CMOS phase shifters.
The rapid aggregation/sedimentation and decreased transport of nanoscale zero-valent iron (nZVI) particles limit their application in groundwater remediation. To decrease the aggregation/sedimentation and increase the transport of nZVI, sodium alginate (a natural polysaccharide) and bentonite (one type of ubiquitous clay) were employed to modify nZVI. Different techniques were utilized to characterize the modified nZVI. We found that modification with either sodium alginate or bentonite could disperse nZVI and shifted their zeta potentials from positive to negative. Comparing with the bare nZVI, the sedimentation rates of modified nZVI either by sodium alginate or bentonite are greatly decreased and their transport are significantly increased. The transport of modified nZVI can be greatly increased by increasing flow rate. Furthermore, Cr(VI) can be efficiently removed by the modified nZVI (both sodium alginate and bentonite modified nZVI). Comparing with bare nZVI, the two types of modified nZVI contain lower toxicities to Escherichia coli. The results of this study indicate that both sodium alginate and bentonite can be employed as potential stabilizers to disperse nZVI and improve their application feasibility for in situ groundwater remediation.
The hepatitis B surface antigen (HBsAg) is a vital serum marker for hepatitis B virus (HBV) infection. Amino acid (AA) substitutions in small hepatitis B surface protein (SHBs) are known to affect HBsAg level. However, how the genetic backbones of SHBs sequences would affect the roles of a specific AA substitution on HBsAg level remains unclear. In this study, we found that sI126 had a very high substitution detection rate of 17.54% (40/228) in untreated chronic hepatitis B cohort with subgenotype C2 HBV infection. Among different substitution types at sI126, the sI126T (N = 28) was found to be associated with significantly lower serum HBsAg level. Clone sequencing revealed that sI126T-harboring SHBs sequences had varied genetic backbones with zero to nine additional AA substitutions. Thus, we constructed 24 HBsAg expression plasmids harboring sI126T without (plasmid 1, P1) or with (P2-P24) additional AA substitution(s) and studied them in the HepG2 cells. The HBsAg levels were determined by both ELISA and Western blot. In vitro experiments showed that P1 significantly reduced HBsAg level and its secretion (p < .05), however, P2-P24 showed various extracellular and intracellular HBsAg levels. No significant differences were detected among the HBsAg mRNA levels of nine representative mutant plasmids. Our findings suggest that the modulation of HBsAg level by sI126T is affected by additional AA substitution(s) in the S region of HBV. The effects of AA combination substitutions in SHBs sequences on HBsAg levels are worthwhile for more attentions in terms of HBV biology and its clinical application.
Keywords: Amino acid substitution; Genetic backbone; Hepatitis B surface antigen; Secretion;
Background: Diatoms are of great significance to primary productivity in oceans, yet little is known about their biogeographic distribution in oligotrophic rivers. Results: With the help of metabarcoding analysis of 279 samples from the Yangtze River, we provided the first integral biogeographic pattern of planktonic and benthic diatoms over a 6030 km continuum along the world's third largest river. Our study revealed spatial dissimilarity of diatoms under varying landforms, including plateau, mountain, foothill, basin, foothill-mountain, and plain regions, from the river source to the estuary. Environmental drivers of diatom communities were interpreted in terms of photosynthetically active radiation, temperature, channel slope and nutrients, and human interference. Typical benthic diatoms, such as Pinnularia, Paralia, and Aulacoseira, experienced considerable reduction in relative abundance downstream of the Three Gorges Dam and the Xiluodu Dam, two of the world's largest dams. Conclusions: Our study revealed that benthic diatoms are of particular significance in characterizing motile guild in riverine environments, which provides insights into diatom biogeography and biogeochemical cycles in large river ecosystems.
Geochronology is essential for understanding Earth's history. The availability of precise and accurate isotopic data is increasing; hence it is crucial to develop transparent and accessible data reduction techniques and tools to transform raw mass spectrometry data into robust chronological data. Here we present a Monte Carlo sampling approach to fully propagate uncertainties from linear regressions for isochron dating. Our new approach makes no prior assumption about the causes of variability in the derived chronological results and propagates uncertainties from both experimental measurements (analytical uncertainties) and underlying assumptions (model uncertainties) into the final age determination. Using synthetic examples, we find that although the estimates of the slope and y-intercept (hence age and initial isotopic ratios) are comparable between the Monte Carlo method and the benchmark ``Isoplot" algorithm, uncertainties from the later could be underestimated by up to 60%, which are likely due to an incomplete propagation of model uncertainties. An additional advantage of the new method is its ability to integrate with geological information to yield refined chronological constraints. The new method presented here is specifically designed to fully propagate errors in geochronological applications involves linear regressions such as Rb-Sr, Sm-Nd, Re-Os, Pt-Os, Lu-Hf, U-Pb (with discordant points), Pb-Pb and Ar-Ar. (C) 2018 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
OBJECTIVES: The evolution of multimorbidity describes the continuum from a healthy status to the development of a single disease and further progression to multimorbidity with additional diseases. We investigated the evolution of cardiometabolic multimorbidity and risk for mortality in a Chinese population. DESIGN: Longitudinal cohort study using data from the CHinese Electronic health Records Research in Yinzhou (CHERRY) study, with 5.43 million person-years follow-up (median 5.16 years). PARTICIPANTS: Data for 1 038 704 adults (total 22 750 deaths) were analysed. EXPOSURE: Cardiometabolic multimorbidity was defined as ever being diagnosed with two or more of three diseases: hypertension, diabetes and cardiovascular disease (CVD). PRIMARY AND SECONDARY OUTCOME MEASURES: Age-adjusted and sex-adjusted HRs were calculated for all-cause mortality. RESULTS: The cardiometabolic disease status of 105 209 (10.1%) individuals changed during the follow-up. The prevalence of cardiometabolic multimorbidity increased from 2.41% (95% CI: 2.38% to 2.44%) to 5.94% (95% CI: 5.90% to 5.99%). Baseline multimorbidity status showed the HR (95% CI) was 1.37 (1.33 to 1.42) in those with one disease, 1.71 (1.64 to 1.79) in those with two diseases and 2.22 (2.00 to 2.46) in those with three diseases. The highest HRs were observed for CVD only (3.31, 95% CI: 3.05 to 3.59) or diabetes and CVD (3.12, 95% CI: 2.37 to 4.11). Those with hypertension only had the lowest HR (1.26, 95% CI: 1.22 to 1.30). Longitudinal data showed the HRs (95% CI) in patients with one, two and three diseases were 1.36 (1.32 to 1.41), 2.03 (1.96 to 2.10) and 2.16 (2.05 to 2.29), respectively. CONCLUSIONS: The prevalence of cardiometabolic multimorbidity in a general Chinese population increased more than doubled over 5 years, indicating rapid evolution of cardiometabolic multimorbidity. A history of CVD dominates the risk for mortality. A complementary strategy for primary and secondary prevention of cardiometabolic diseases is needed in China.
Nitrous oxide (N2O) and nitric oxide (NO) emissions from domestic wastewater treatment had been widely investigated due to their severe greenhouse effect and stratospheric ozone depletion. Researches concerning N2O and NO emissions from industrial wastewater treatment which usually contain high concentrations of nitrogen and refractory organics were still limited. In this study, N2O and NO emissions from a biological aerated filter (BAF) for coking wastewater treatment were investigated that achieved efficient nitrogen and chemical oxygen demand (COD) removal efficiency through short-cut nitrification and denitrification. Notably, emission factor of N2O and NO reached 23.58% and 0.09% respectively, much higher than those emitted from most domestic wastewater treatment plants. Moreover, batch experiments revealed that nitrifier denitrification contributed as high as 97.17% and 93.89% of the total generated N2O and NO, which was supposed to be the main source of green-house gases (GHGs) during coking wastewater treatment. The inhibition of denitrifying reductase by the toxic components in coking wastewater and the severe nitrite accumulations were key factors promoting the high emission of N2O and NO. Microbial community analysis based on high throughput sequencing of 16S rRNA gene revealed that ammonia-oxidizing bacteria and denitrifying bacteria distributed abundantly in the BAF reactor, while nitrite-oxidizing bacteria was almost absent. The huge imbalance between NO and N2O reductase was an underlying explanation for the high N2O emission in the present coking wastewater treatment according to Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) result. This study is of great significance to understanding the high N2O and NO emission and developing the control strategy when treating industrial wastewater with high-strength nitrogen and refractory organics.
The principle of ion concentration polarization (ICP) is the most efficient method for achieving nano-electrokinetic ion enrichment. In this paper, nano-electrokinetic ion enrichment of highly viscosity fluids in micronanochannel was investigated. Based on the Poisson-Nernst--Plank (PNP) equations coupled with the Navier-Stokes equation, ion enrichment and enrichment breakdown, the effects of the width and wall structure of the nanochannel on the ion enrichment were investigated. It is concluded that the ion enrichment is attributed to the balance between the electrophoresis effect provided by the applied voltage and the repulsive force generated by the surface charge. The ion enrichment is divided into three stages: enrichment generation, enrichment promotion and enrichment breakdown. When the applied voltage increases, the ion concentration first increases. When the voltage reaches the peak, it gradually decreases. At the same voltage, both the peak concentration and the peak voltage increase as the width of the nanochannel decreases. The nanochannel of the square wave wall structure has highest peak concentration than the zigzag type, the multi-wave type and the straight line type. This work provides a significant theoretical basis for increasing enrichment ratio and ion concentration in low concentration molecular detection tasks.