Since its initial proposal, steam-assisted gravity drainage (SAGD) has become a key technology of heavy-oil recovery. Due to the large heat loss and high energy consumption in the SAGD process, gas-assisted SAGD is a way to improve the efficiency. In this paper, a two-dimensional (2D) visualization simulation experiment of SAGD is introduced. By adjusting the volume ratio of steam to nitrogen, the proportion for the nitrogen-assisted SAGD process is optimized based on a homogeneous model. The 2D visualization simulation experiment of a heterogeneous model is carried out by adjusting the length of a low-permeability interlayer. The results of the SAGD simulation experiment and nitrogen-assisted SAGD simulation experiment are analyzed. The effect of nitrogen on breaking through and bypassing the low-permeability interlayer is discussed. The experimental results show that the optimal volume ratio of steam to nitrogen is 8:2 in the process of nitrogen-assisted SAGD. At this volume ratio, the sweep efficiency, recovery factor and cumulative oil-steam ratio are the largest, and the recovery factor reaches up to 49.12%. The experimental results for the heterogeneous model with the low-permeability interlayer show that nitrogen can synergistically promote steam to break through the fully occluding interlayer and bypass partially occluding interlayers. Comparing the results of the SAGD simulation with those of the nitrogen-assisted SAGD simulation for the heterogeneous model with the low-permeability interlayer, it is found that the sweep efficiency of steam increases from 34.24% to 43.12%. This result can be explained by the effect of nitrogen on expanding the steam-swept area in the SAGD process and the synergistic action between nitrogen and steam.
The environmental risks and health impacts associated with particulate organophosphate flame retardants (OPFRs), which are ubiquitous in the global atmosphere, have not been adequately assessed due to the lack of data on the reaction kinetics, products, and toxicity associated with their atmospheric transformations. Here, the importance of such transformations for OPFRs are explored by investigating the reaction kinetics, degradation chemical mechanisms, and toxicological evolution of two OPFRs (2-ethylhexyl diphenyl phosphate (EHDP) and diphenyl phosphate (DPhP)) coated on (NH4)(2)SO4 particles upon heterogeneous OH oxidation. The derived reaction rate constants for the heterogeneous loss of EHDP and DPhP are (1.12 +/- 0.22) x 10(-12) and (2.33 +/- 0.14) x 10(-12) cm(3) molecules(-1) s(-1), respectively. Using recently developed real-time particle chemical composition measurements, particulate products from heterogeneous photooxidation and the associated degradation mechanisms for particulate OPFRs are reported for the first time. Subsequent cytotoxicity analysis of the unreacted and oxidized OPFR particles indicated that the overall particle cytotoxicity was reduced by up to 94% with heterogeneous photooxidation, likely due to a significantly lower cytotoxicity associated with the oxidized OPFR products relative to the parent OPFRs. The present work not only provides guidance for future field sampling for the detection of transformation products of OPFRs, but also strongly supports the ongoing risk assessment of these emerging chemicals and most critically, their products.
Abstract Flue gas collection from steam generators and its utilization in enhanced oil recovery (EOR) can reduce CO2 emissions into the atmosphere and improve oil recovery efficiency. Under the environments of flue gas corrosion in oilfields, the effects of corrosion time, temperature, pressure, velocity, and concentrations of O2, SO2, H2O, and NaCl on corrosion rates of steels used for a downhole string were investigated through physical simulation experiments. The corrosion mechanisms were analyzed by component, and the morphology of the corrosion products tested by X-ray diffraction (XRD) and scanning electron microscopy (SEM). In the gas phase, the corrosion rates of X70, P110, and N80 notably increase with temperature and O2 concentration. The corrosion rates first increase rapidly with pressure from 1.0 to 3.0 MPa and then remain largely stable. Meanwhile, the corrosion rates of X70, P110, and N80 in the liquid phase first increase and then decrease with temperature and reach maximum values at 90°C. The corrosion rates of X70, P110, and N80 increase notably with velocity and the concentrations of O2, SO2, H2O, and NaCl. The corrosion rate of 13Cr is considerably lower than those of N80, P110, and X70, which shows good corrosion resistance performance. To reduce the flue gas corrosion of a downhole string, the relative humidity of the flue gas should be lower than 0.7, the temperature of the flue gas in the wellbore should avoid the range between 80 and 100°C, the excess air coefficient of the boiler should be kept at a reasonable value to reduce the O2 content in the flue gas, and the flue gas should not be coinjected into wellbores with brine. The injection of flue gas is technically feasible considering the corrosion of downhole string.
Since 1971, it has been known that the atmospheric free radicals play a pivotal role in maintaining the oxidizing power of the troposphere. The existence of the oxidizing power is an important feature of the troposphere to remove primary air pollutants emitted from human beings as well as those from the biosphere. Nevertheless, serious secondary air-pollution incidents can take place due to fast oxidation of the primary pollutants. Elucidating the atmospheric free-radical chemistry is a demanding task in the field of atmospheric chemistry worldwide, which includes two kinds of work: first, the setup of reliable radical detection systems; second, integrated field studies that enable closure studies on the sources and sinks of targeted radicals such as OH and NO3. In this review, we try to review the Chinese efforts to explore the atmospheric free-radical chemistry in such chemical complex environments and the possible link of this fast gas-phase oxidation with the fast formation of secondary air pollution in the city-cluster areas in China.
Carbonaceous aerosols are linked to severe haze and health effects, while its origins remain still unclear over China. PM2.5 samples covering four seasons from Jan. 2016 to Jan. 2017 were collected at six sites in Chifeng, a representative agro-pastoral transitional zone of North China focusing on the characteristics and sources of organic carbon (OC) and elemental carbon (EC). The annual averages of OC, EC were 9.00 ± 7.24 μg m−3, 1.06 ± 0.79 μg m−3 with site Songshan in coal mining region exhibited significantly enhanced levels. The residential heating emissions, air stagnation, and secondary organic formation all contributed the higher OC, EC levels in winter. Meanwhile, the impacts from open biomass burning were most intensive in spring. The retroplumes via Lagrangian model highlighted a strong seasonality of regional sources which had more impacts on EC increases. The Positive Matrix Factorization (PMF) model resolved six primary sources, namely, coal combustion, biomass burning, industrial processes, oil combustion, fugitive dust, and fireworks. Coal combustion and biomass burning comprised large fractions of OC (30.57%, 30.40%) and EC (23.26%, 38.47%) across the sites, while contributions of industrial processes and oil combustion clearly increased in the sites near industrial sources as smelters. PMF and EC tracer method gave well correlated (r=0.65) estimates of Secondary OC (SOC). The proportion of coal combustion and SOC were more enhanced along with PM2.5 elevation compared to other sources, suggesting their importances during the pollution events.
The externally driven nonlinear Dirac (NLD) equation with scalar-scalar self-interaction studied in [J. Phys. A: Math. Theor. 49, 065402 (2016)] is revisited. By using a variational method and an ansatz with five collective coordinates, the dynamics of the NLD solitons is well described. It is shown that this new ansatz possesses certain advantages, namely the canonical momentum agrees with the field momentum, the energy associated to the collective coordinate equations agrees with the energy of the NLD soliton, whereas the ansatz with either three or four collective coordinates does not. Thus the study of the whole phase space of the system is enhanced. It is also shown that this approach is equivalent to the method of moments: the time variation of the charge, the momentum, the energy, and the first moment of the charge. The advantages of the new ansatz are illustrated by means of numerical simulations.
In this study, a novel class of niobium (Nb) doped titanate nanoflakes (TNFs) are fabricated through a one-step hydrothermal method. Nb doping affects the curving of titanate nanosheet, leading to the formation of nanoflake structure. In addition, Nb5+ filled in the interlayers of [TiO6] alters the light adsorption property of pristine titanate. The band gap of Nb-TNFs is narrowed to 2.85 eV, while neat titanate nanotubes (TNTs) is 3.4 eV. The enhanced visible light adsorption significantly enhances the visible-light-driven activity of Nb-TNFs for ibuprofen (IBP) degradation. The pseudo-first order kinetics constant for Nb-TNFs is calculated to be 1.04 h−1, while no obvious removal is observed for TNTs. Photo-generated holes (h+) and hydroxyl radicals (OH) are responsible for IBP degradation. The photocatalytic activity of Nb-TNFs depends on pH condition, and the optimal pH value is found to be 5. In addition, Nb-TNFs exhibited superior photo-stability during the reuse cycles. The results demonstrated Nb-TNFs are very promising in photocatalytic water purification.
In this paper, a factorial analysis approach is applied to characterize the potential single and interactive factors as well as their effects on the interface and miscibility of three light oil–CO2 systems under 32 different conditions. First, a modified Peng–Robinson equation of state coupled with the parachor model is applied to calculate the vapour–liquid equilibrium and interfacial tensions (IFTs) at a variation of pore radii and different pressures, based on which the MMPs are determined from the diminishing interface method. Second, by means of the factorial-analysis approach and calculated IFTs and minimum miscibility pressures (MMPs), the following five factors are specifically studied to evaluate their main and interactive effects on the IFTs and MMPs: temperature, initial oil and gas compositions, feed gas to oil ratio (feed GOR), and pore radius. It is found that the main and interactive effects of the five factors on the IFTs are inconsistent at different pressures. The effects of the five factors on the MMPs are evaluated quantitatively, which contribute to screen out significant factors, analyze interactions, and identify schemes for the miscible CO2 enhanced oil recovery. The most positive significant main and interactive effects on the MMPs are Factors C (gas composition) and AB (temperature and oil composition), whereas the most negative results are Factors E (pore radius) and AC (temperature and gas compositions). A three-factor analysis indicates that the MMP is substantially reduced in small pores by controlling the percentage of the CH4-dominated gas in the impure CO2 sample and lowering the feed GOR.
Compared with silicon-based solar cells, organic-inorganic hybrid perovskite solar cells (PSCs) possess a distinct advantage, i.e., its application in the flexible field. However, the efficiency of the flexible device is still lower than that of the rigid one. First, it is found that the dense formamidinium (FA)-based perovskite film can be obtained with the help of N-methyl-2-pyrrolidone (NMP) via low pressure-assisted method. In addition, CH3NH3Cl (MACl) as the additive can preferentially form MAPbCl(3-)(x)I(x) perovskite seeds to induce perovskite phase transition and crystal growth. Finally, by using FAI center dot PbI2 center dot NMP+x%MACl as the precursor, i.e., ligand and additive synergetic process, a FA-based perovskite film with a large grain size, high crystallinity, and low trap density is obtained on a flexible substrate under ambient conditions due to the synergetic effect, e.g., MACl can enhance the crystallization of the intermediate phase of FAI center dot PbI2 center dot NMP. As a result, a record efficiency of 19.38% in flexible planar PSCs is achieved, and it can retain about 89% of its initial power conversion efficiency (PCE) after 230 days without encapsulation under ambient conditions. The PCE retains 92% of the initial value after 500 bending cycles with a bending radii of 10 mm. The results show a robust way to fabricate highly efficient flexible PSCs.
Compared with silicon-based solar cells, organic-inorganic hybrid perovskite solar cells (PSCs) possess a distinct advantage, i.e., its application in the flexible field. However, the efficiency of the flexible device is still lower than that of the rigid one. First, it is found that the dense formamidinium (FA)-based perovskite film can be obtained with the help of N-methyl-2-pyrrolidone (NMP) via low pressure-assisted method. In addition, CH3NH3Cl (MACl) as the additive can preferentially form MAPbCl(3-)(x)I(x) perovskite seeds to induce perovskite phase transition and crystal growth. Finally, by using FAI center dot PbI2 center dot NMP+x%MACl as the precursor, i.e., ligand and additive synergetic process, a FA-based perovskite film with a large grain size, high crystallinity, and low trap density is obtained on a flexible substrate under ambient conditions due to the synergetic effect, e.g., MACl can enhance the crystallization of the intermediate phase of FAI center dot PbI2 center dot NMP. As a result, a record efficiency of 19.38% in flexible planar PSCs is achieved, and it can retain about 89% of its initial power conversion efficiency (PCE) after 230 days without encapsulation under ambient conditions. The PCE retains 92% of the initial value after 500 bending cycles with a bending radii of 10 mm. The results show a robust way to fabricate highly efficient flexible PSCs.