科研成果 by Type: 期刊论文

2016
Liu Y, Lu K, Dong HB, Li X, Cheng P, Zou Q, Wu Y, Liu X, Zhang Y. In situ monitoring of atmospheric nitrous acid based on multi-pumping flow system and liquid waveguide capillary cell. Journal of Environment Sciences. 2016;43:273-284.Abstract
In the last four decades, various techniques including spectroscopic, wet chemical and mass spectrometric methods, have been developed and applied for the detection of ambient nitrous acid (HONO). We developed a HONO detection system based on long path photometry which consists of three independent modules i.e., sampling module, fluid propulsion module and detection module. In the propulsion module, solenoid pumps are applied. With solenoid pumps the pulsed flow can be computer controlled both in terms of pump stroke volume and pulse frequency, which enables the attainment of a very stable flow rate. In the detection module, a customized Liquid Waveguide Capillary Cell (LWCC) is used. The customized LWCC pre-sets the optical fiber in-coupling with the liquid wave guide, providing the option of fast startup and easy maintenance of the absorption photometry. In summer 2014, our system was deployed in a comprehensive campaign at a rural site in the North China Plain. More than one month of high quality HONO data spanning from the limit of detection to 5 ppb were collected. Intercomparison of our system with another established system from Forschungszentrum Juelich is presented and discussed. In conclusion, our instrument achieved a detection limit of 10 pptV within 2 min and a measurement uncertainty of 7%, which is well suited for investigation of the HONO budget from urban to rural conditions in China. (C) 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
Tham YJ, Wang Z, Li Q, Yun H, Wang W, Wang X, Xue L, Lu K, Ma N, Bohn B, et al. Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China. Atmospheric Chemistry and Physics. 2016;16(23):14959-14977.Abstract
Nitryl chloride (ClNO2) is a dominant source of chlorine radical in polluted environment, and can significantly affect the atmospheric oxidative chemistry. However, the abundance of ClNO2 and its exact role are not fully understood under different environmental conditions. During the summer of 2014, we deployed a chemical ionization mass spectrometer to measure ClNO2 and dinitrogen pentoxide (N2O5) at a rural site in the polluted North China Plain. Elevated mixing ratios of ClNO2 (> 350 pptv) were observed at most of the nights with low levels of N2O5 (< 200 pptv). The highest ClNO2 mixing ratio of 2070 pptv (1 min average) was observed in a plume from a megacity (Tianjin), and was characterized with a faster N2O5 heterogeneous loss rate and ClNO2 production rate compared to average conditions. The abundant ClNO2 concentration kept increasing even after sunrise, and reached a peak 4 h later. Such highly sustained ClNO2 peaks after sunrise are discrepant from the previously observed typical diurnal pattern. Meteorological and chemical analysis shows that the sustained ClNO2 morning peaks are caused by significant ClNO2 production in the residual layer at night followed by downward mixing after breakup of the nocturnal inversion layer in the morning. We estimated that similar to 1.7-4.0 ppbv of ClNO2 would exist in the residual layer in order to maintain the observed morning ClNO2 peaks at the surface site. Observation-based box model analysis show that photolysis of ClNO2 produced chlorine radical with a rate up to 1.12 ppbv h(-1), accounting for 10-30% of primary ROx production in the morning hours. The perturbation in total radical production leads to an increase of integrated daytime net ozone production by 3% (4.3 ppbv) on average, and with a larger increase of 13% (11 ppbv) in megacity outflow that was characterized with higher ClNO2 and a relatively lower oxygenated hydrocarbon (OVOC) to non-methane hydrocarbon (NMHC) ratio.
2015
Fuchs H, Hofzumahaus A, Rohrer F, Bohn B, Brauers T, Dorn H-P, Häseler R, Holland F, Kaminski M, Li X, et al. Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation. Nature Geoscienc. 2015;6(12):1023-1026.Abstract
Most pollutants in the Earth's atmosphere are removed by oxidation with highly reactive hydroxyl radicals. Field measurements have revealed much higher concentrations of hydroxyl radicals than expected in regions with high loads of the biogenic volatile organic compound isoprene(1-8). Different isoprene degradation mechanisms have been proposed to explain the high levels of hydroxyl radicals observed(5,9-11). Whether one or more of these mechanisms actually operates in the natural environment, and the potential impact on climate and air quality, has remained uncertain(12-14). Here, we present a complete set of measurements of hydroxyl and peroxy radicals collected during isoprene-oxidation experiments carried out in an atmospheric simulation chamber, under controlled atmospheric conditions. We detected significantly higher concentrations of hydroxyl radicals than expected based on model calculations, providing direct evidence for a strong hydroxyl radical enhancement due to the additional recycling of radicals in the presence of isoprene. Specifically, our findings are consistent with the unimolecular reactions of isoprene-derived peroxy radicals postulated by quantum chemical calculations(9-11). Our experiments suggest that more than half of the hydroxyl radicals consumed in isoprene-rich regions, such as forests, are recycled by these unimolecular reactions with isoprene. Although such recycling is not sufficient to explain the high concentrations of hydroxyl radicals observed in the field, we conclude that it contributes significantly to the oxidizing capacity of the atmosphere in isoprene-rich regions.
Kaiser J, Wolfe GM, Bohn B, Broch S, Fuchs H, Ganzeveld LN, Gomm S, Haeseler R, Hofzumahaus A, Holland F, et al. Evidence for an unidentified non-photochemical ground-level source of formaldehyde in the Po Valley with potential implications for ozone production. Atmospheric Chemistry and Physics. 2015;15(3):1289-1298.Abstract
Ozone concentrations in the Po Valley of northern Italy often exceed international regulations. As both a source of radicals and an intermediate in the oxidation of most volatile organic compounds (VOCs), formaldehyde (HCHO) is a useful tracer for the oxidative processing of hydrocarbons that leads to ozone production. We investigate the sources of HCHO in the Po Valley using vertical profile measurements acquired from the airship Zeppelin NT over an agricultural region during the PEGASOS 2012 campaign. Using a 1-D model, the total VOC oxidation rate is examined and discussed in the context of formaldehyde and ozone production in the early morning. While model and measurement discrepancies in OH reactivity are small (on average 3.4 ± 13%), HCHO concentrations are underestimated by as much as 1.5 ppb (45%) in the convective mixed layer. A similar underestimate in HCHO was seen in the 2002–2003 FORMAT Po Valley measurements, though the additional source of HCHO was not identified. Oxidation of unmeasured VOC precursors cannot explain the missing HCHO source, as measured OH reactivity is explained by measured VOCs and their calculated oxidation products. We conclude that local direct emissions from agricultural land are the most likely source of missing HCHO. Model calculations demonstrate that radicals from degradation of this non-photochemical HCHO source increase model ozone production rates by as much as 0.6 ppb h−1 (12%) before noon.
Li X, Rohrer F, Hofzumahaus A, Brauers T, Häseler R, Bohn B, Broch S, Fuchs H, Gomm S, Holland F, et al. Response to Comment on ''Missing gas-phase source of HONO inferred from Zeppelin measurements in the troposphere''. Science. 2015;348(6241):1326-1326.Abstract
Ye et al. have determined a maximum nitrous acid (HONO) yield of 3% for the reaction HO2 center dot H2O + NO2, which is much lower than the yield used in our work. This finding, however, does not affect our main result that HONO in the investigated Po Valley region is mainly from a gas-phase source that consumes nitrogen oxides.
Liu Y, Yuan B, Li X, Shao M, Lu S, Li Y, Chang C-C, Wang Z, Hu W, Huang X, et al. Impact of pollution controls in Beijing on atmospheric oxygenated volatile organic compounds (OVOCs) during the 2008 Olympic Games: observation and modeling implications. Atmospheric Chemistry and Physics. 2015;15(6):3045-3062.Abstract
Oxygenated volatile organic compounds (OVOCs) are important products of the photo-oxidation of hydrocarbons. They influence the oxidizing capacity and the ozone-forming potential of the atmosphere. In the summer of 2008, 2 months of emission restrictions were enforced in Beijing to improve air quality during the Olympic Games. Observational evidence reported in related studies that these control measures were efficient in reducing the concentrations of primary anthropogenic pollutants (CO, NOx and non-methane hydrocarbons, i.e., NMHCs) by 30-40%. In this study, the influence of the emission restrictions on ambient levels of OVOCs was explored using a neural network analysis with consideration of meteorological conditions. Statistically significant reductions in formaldehyde (HCHO), acetaldehyde (CH3CHO), methyl ethyl ketone (MEK) and methanol were found to be 12.9, 15.8, 17.1 and 19.6%, respectively, when the restrictions were in place. The effect of emission controls on acetone was not detected in neural network simulations, probably due to pollution transport from surrounding areas outside Beijing. Although the ambient levels of most NMHCs were reduced by similar to 35% during the full control period, the emission ratios of reactive alkenes and aromatics closely related to automobile sources did not present much difference (< 30%). A zero-dimensional box model based on the Master Chemical Mechanism version 3.2 (MCM3.2) was applied to evaluate how OVOC production responds to the reduced precursors during the emissions control period. On average, secondary HCHO was produced from the oxidation of anthropogenic alkenes (54%), isoprene (30%) and aromatics (15%). The importance of biogenic sources for the total HCHO formation was almost on par with that of anthropogenic alkenes during the daytime. Anthropogenic alkenes and alkanes dominated the photochemical production of other OVOCs such as acetaldehyde, acetone and MEK. The relative changes of modeled HCHO, CH3CHO, methyl vinyl ketone and methacrolein (MVK + MACR) before and during the pollution controlled period were comparable to the estimated reductions in the neural network, reflecting that current mechanisms can largely explain secondary production of those species under urban conditions. However, it is worth noting that the box model overestimated the measured concentrations of aldehydes by a factor of 1.4-1.7 without consideration of loss of aldehydes on aerosols, and simulated MEK was in good agreement with the measurements when primary sources were taken into consideration. These results suggest that the understanding of the OVOCs budget in the box model remains incomplete, and that there is still considerable uncertainty in particular missing sinks (unknown chemical and physical processes) for aldehydes and absence of direct emissions for ketones
2014
Bonn B, Bourtsoukidis E, Sun TS, Bingemer H, Rondo L, Javed U, Li J, Axinte R, Li X, Brauers T, et al. The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany. Atmospheric Chemistry and Physics. 2014;14(9):10823-10843.Abstract
It has been claimed for more than a century that atmospheric new particle formation is primarily influenced by the presence of sulfuric acid. However, the activation process of sulfuric acid related clusters into detectable particles is still an unresolved topic. In this study we focus on the PARADE campaign measurements conducted during August/September 2011 at Mt Kleiner Feldberg in central Germany. During this campaign a set of radicals, organic and inorganic compounds and oxidants and aerosol properties were measured or calculated. We compared a range of organic and inorganic nucleation theories, evaluating their ability to simulate measured particle formation rates at 3 nm in diameter (J(3)) for a variety of different conditions. Nucleation mechanisms involving only sulfuric acid tentatively captured the observed noon-time daily maximum in J(3), but displayed an increasing difference to J(3) measurements during the rest of the diurnal cycle. Including large organic radicals, i.e. organic peroxy radicals (RO2) deriving from monoterpenes and their oxidation products, in the nucleation mechanism improved the correlation between observed and simulated J(3). This supports a recently proposed empirical relationship for new particle formation that has been used in global models. However, the best match between theory and measurements for the site of interest was found for an activation process based on large organic peroxy radicals and stabilised Criegee intermediates (sCI). This novel laboratory-derived algorithm simulated the daily pattern and intensity of J(3) observed in the ambient data. In this algorithm organic derived radicals are involved in activation and growth and link the formation rate of smallest aerosol particles with OH during daytime and NO3 during night-time. Because the RO2 lifetime is controlled by HO2 and NO we conclude that peroxy radicals and NO seem to play an important role for ambient radical chemistry not only with respect to oxidation capacity but also for the activation process of new particle formation. This is supposed to have significant impact of atmospheric radical species on aerosol chemistry and should be taken into account when studying the impact of new particles in climate feedback cycles.
Fuchs H, Acir I-H, Bohn B, Brauers T, Dorn H-P, Häseler R, Hofzumahaus A, Holland F, Kaminski M, Li X, et al. OH regeneration from methacrolein oxidation investigated in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics. 2014;14(15):7895-7908.Abstract
Hydroxyl radicals (OH) are the most important reagent for the oxidation of trace gases in the atmosphere. OH concentrations measured during recent field campaigns in isoprene-rich environments were unexpectedly large. A number of studies showed that unimolecular reactions of organic peroxy radicals (RO2) formed in the initial reaction step of isoprene with OH play an important role for the OH budget in the atmosphere at low mixing ratios of nitrogen monoxide (NO) of less than 100 pptv. It has also been suggested that similar reactions potentially play an important role for RO2 from other compounds. Here, we investigate the oxidation of methacrolein (MACR), one major oxidation product of isoprene, by OH in experiments in the simulation chamber SAPHIR under controlled atmospheric conditions. The experiments show that measured OH concentrations are approximately 50% larger than calculated by the Master Chemical Mechanism (MCM) for conditions of the experiments (NO mixing ratio of 90 pptv). The analysis of the OH budget reveals an OH source that is not accounted for in MCM, which is correlated with the production rate of RO2 radicals from MACR. In order to balance the measured OH destruction rate, 0.77 OH radicals (1σ error: ± 0.31) need to be additionally reformed from each reaction of OH with MACR. The strong correlation of the missing OH source with the production of RO2 radicals is consistent with the concept of OH formation from unimolecular isomerization and decomposition reactions of RO2. The comparison of observations with model calculations gives a lower limit of 0.03 s−1 for the reaction rate constant if the OH source is attributed to an isomerization reaction of MACR-1-OH-2-OO and MACR-2-OH-2-OO formed in the MACR + OH reaction as suggested in the literature (Crounse et al., 2012). This fast isomerization reaction would be a competitor to the reaction of this RO2 species with a minimum of 150 pptv NO. The isomerization reaction would be the dominant reaction pathway for this specific RO2 radical in forested regions, where NO mixing ratios are typically much smaller.
Kaiser J, Li X, Tillmann R, Acir I-H, Holland F, Rohrer F, Wegener R, Keutsch FN. Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements. Atmospheric Measurement Techniques. 2014;7(6):1571-158.Abstract
Two gas-phase formaldehyde (HCHO) measurement techniques, a modified commercial wet-chemical instrument based on Hantzsch fluorimetry and a custom-built instrument based on fiber laser-induced fluorescence (FILIF), were deployed at the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) to compare the instruments' performances under a range of conditions. Thermolysis of para-HCHO and ozonolysis of 1-butene were used as HCHO sources, allowing for calculations of theoretical HCHO mixing ratios. Calculated HCHO mixing ratios are compared to measurements, and the two measurements are also compared. Experiments were repeated under dry and humid conditions (RH < 2% and RH > 60 %) to investigate the possibility of a water artifact in the FILIF measurements. The ozonolysis of 1-butene also allowed for the investigation of an ozone artifact seen in some Hantzsch measurements in previous intercomparisons. Results show that under all conditions the two techniques are well correlated (R-2 >= 0.997), and linear regression statistics show measurements agree with within stated uncertainty (15% FILIF + 5% Hantzsch). No water or ozone artifacts are identified. While a slight curvature is observed in some Hantzsch vs. FILIF regressions, the potential for variable instrument sensitivity cannot be attributed to a single instrument at this time. Measurements at low concentrations highlight the need for a secondary method for testing the purity of air used in instrument zeroing and the need for further FILIF White cell outgassing experiments
Li X, Rohrer F, Brauers T, Hofzumahaus A, Lu K, Shao M, Zhang Y, Wahner A. Modeling of HCHO and CHOCHO at a semi-rural site in southern China during the PRIDE-PRD2006 campaign. Atmospheric Chemistry and Physics. 2014;14(22):12291–12305.Abstract
HCHO and CHOCHO are important trace gases in the atmosphere, serving as tracers of VOC oxidations. In the past decade, high concentrations of HCHO and CHOCHO have been observed for the Pearl River Delta (PRD) region in southern China. In this study, we performed box model simulations of HCHO and CHOCHO at a semi-rural site in the PRD, focusing on understanding their sources and sinks and factors influencing the CHOCHO to HCHO ratio (RGF). The model was constrained by the simultaneous measurements of trace gases and radicals. Isoprene oxidation by OH radicals is the major pathway forming HCHO, followed by degradations of alkenes, aromatics, and alkanes. The production of CHOCHO is dominated by isoprene and aromatic degradation; contributions from other NMHCs are of minor importance. Compared to the measurement results, the model predicts significant higher HCHO and CHOCHO concentrations. Sensitivity studies suggest that fresh emissions of precursor VOCs, uptake of HCHO and CHOCHO by aerosols, fast vertical transport, and uncertainties in the treatment of dry deposition all have the potential to contribute significantly to this discrepancy. Our study indicates that, in addition to chemical considerations (i.e., VOC composition, OH and NOx levels), atmospheric physical processes (e.g., transport, dilution, deposition) make it difficult to use the CHOCHO to HCHO ratio as an indicator for the origin of air mass composition.
Li X, Rohrer F, Hofzumahaus A, Brauers T, Häseler R, Bohn B, Broch S, Fuchs H, Gomm S, Holland F, et al. Missing Gas-Phase Source of HONO Inferred from Zeppelin Measurements in the Troposphere. Science. 2014;344(6181):292-296.Abstract
Gaseous nitrous acid (HONO) is an important precursor of tropospheric hydroxyl radicals (OH). OH is responsible for atmospheric self-cleansing and controls the concentrations of greenhouse gases like methane and ozone. Due to lack of measurements, vertical distributions of HONO and its sources in the troposphere remain unclear. Here, we present a set of observations of HONO and its budget made onboard a Zeppelin airship. In a sunlit layer separated from Earth's surface processes by temperature inversion, we found high HONO concentrations providing evidence for a strong gas-phase source of HONO consuming nitrogen oxides and potentially hydrogen oxide radicals. The observed properties of this production process suggest that the generally assumed impact of HONO on the abundance of OH in the troposphere is substantially overestimated.
Lu K, Rohrer F, Holland F, Fuchs H, Brauers T, Oebel A, Dlugi R, Hu M, Li X, Lou S, et al. Nighttime observation and chemistry of HOx in the Pearl River Delta and Beijing in summer 2006. Atmospheric Chemistry and Physics. 2014;14(10):4979–4999.Abstract
Nighttime HOx chemistry was investigated in two ground-based field campaigns (PRIDE-PRD2006 and CAREBEIJING2006) in summer 2006 in China by comparison of measured and modeled concentration data of OH and HO2. The measurement sites were located in a rural environment in the Pearl River Delta (PRD) under urban influence and in a suburban area close to Beijing, respectively. In both locations, significant nighttime concentrations of radicals were observed under conditions with high total OH reactivities of about 40-50 s(-1) in PRD and 25 s(-1) near Beijing. For OH, the nocturnal concentrations were within the range of (0.5-3) x 10(6) cm(-3), implying a significant nighttime oxidation rate of pollutants on the order of several ppb per hour. The measured nighttime concentration of HO2 was about (0.2-5) x 10(8) cm(-3), containing a significant, model-estimated contribution from RO2 as an interference. A chemical box model based on an established chemical mechanism is capable of reproducing the measured nighttime values of the measured peroxy radicals and k(OH), but underestimates in both field campaigns the observed OH by about 1 order of magnitude. Sensitivity studies with the box model demonstrate that the OH discrepancy between measured and modeled nighttime OH can be resolved, if an additional ROx production process (about 1 ppb h(-1)) and additional recycling (RO2 -> HO2 -> OH) with an efficiency equivalent to 1 ppb NO is assumed. The additional recycling mechanism was also needed to reproduce the OH observations at the same locations during daytime for conditions with NO mixing ratios below 1 ppb. This could be an indication that the same missing process operates at day and night. In principle, the required primary ROx source can be explained by ozonolysis of terpenoids, which react faster with ozone than with OH in the nighttime atmosphere. However, the amount of these highly reactive biogenic volatile organic compounds (VOCs) would require a strong local source, for which there is no direct evidence. A more likely explanation for an additional ROx source is the vertical downward transport of radical reservoir species in the stable nocturnal boundary layer. Using a simplified one-dimensional two-box model, it can be shown that ground-based NO emissions could generate a large vertical gradient causing a downward flux of peroxy acetic nitrate (PAN) and peroxymethacryloyl nitrate (MPAN). The downward transport and the following thermal decomposition of these compounds can produce up to 0.3 ppb h(-1) radicals in the atmospheric layer near the ground. Although this rate is not sufficient to explain the complete OH discrepancy, it indicates the potentially important role of vertical transport in the lower nighttime atmosphere.
Nehr S, Bohn B, Dorn H-P, Fuchs H, Häseler R, Hofzumahaus A, Li X, Rohrer F, Tillmann R, Wahner A. Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments. Atmospheric Chemistry and Physics. 2014;14(13):6941-6952.Abstract
Current photochemical models developed to simulate the atmospheric degradation of aromatic hydrocarbons tend to underestimate OH radical concentrations. In order to analyse OH budgets, we performed experiments with benzene, toluene, p-xylene and 1,3,5-trimethylbenzene in the atmosphere simulation chamber SAPHIR. Experiments were conducted under low-NO conditions (typically 0.1–0.2 ppb) and high-NO conditions (typically 7–8 ppb), and starting concentrations of 6–250 ppb of aromatics, dependent on OH rate constants. For the OH budget analysis a steady-state approach was applied in which OH production and destruction rates (POH and DOH) have to be equal. The POH were determined from measurements of HO2, NO, HONO, and O3 concentrations, considering OH formation by photolysis and recycling from HO2. The DOH were calculated from measurements of the OH concentrations and total OH reactivities. The OH budgets were determined from DOH/POH ratios. The accuracy and reproducibility of the approach were assessed in several experiments using CO as a reference compound where an average ratio DOH/POH = 1.13 ± 0.19 was obtained. In experiments with aromatics, these ratios ranged within 1.1–1.6 under low-NO conditions and 0.9–1.2 under high-NO conditions. The results indicate that OH budgets during photo-oxidation experiments with aromatics are balanced within experimental accuracies. Inclusion of a further, recently proposed OH production via HO2 + RO2 reactions led to improvements under low-NO conditions but the differences were small and insignificant within the experimental errors.
Rohrer F, Lu K, Hofzumahaus A, Bohn B, Brauers T, Chang C-C, Fuchs H, Häseler R, Holland F, Hu M, et al. Maximum efficiency in the hydroxyl-radical-based self-cleansing of the troposphere. Nature Geoscience. 2014;7(8):559-563.Abstract
The removal of trace gases from the troposphere is, in most cases, initialized by reactions with hydroxyl radicals, and the products of these reactions are eventually deposited on the Earth's surface. The concentration of these hydroxyl radicals is therefore a measure of atmospheric self-cleansing. In theory, hydroxyl-radical concentrations can be enhanced by the recycling of some of the reaction products. The only known efficient recycling process involves nitrogen oxide and leads to production of ozone, yet observations in regions with high hydrocarbon and low nitrogen oxide concentrations show substantially elevated hydroxyl-radical concentrations, up to ten times higher than expected. If we normalize observed hydroxyl-radical concentrations to the maximum achievable in model calculations with variable nitrogen oxide concentrations, this photochemical coordinate system uncovers a common feature in almost all of these observations: even in the presence of inadequate amounts of nitrogen oxides, hydroxyl-radical concentrations are enhanced to the theoretical maximum obtainable at very much higher nitrogen oxide concentrations. This means that this important part of the self-cleansing capability of the atmosphere is working at maximum efficiency even in regions with a high burden of biogenic hydrocarbons and low nitrogen oxide concentration. Since these processes do not involve nitrogen oxides, tropospheric ozone production is greatly reduced compared with the expectation from current theory.
2013
Li X, Brauers T, Hofzumahaus A, Lu K, Li YP, Shao M, Wagner T, Wahner A. MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China. Atmospheric Chemistry and Physics. 2013;13(4):2133-2151.Abstract
We performed MAX-DOAS measurements during the PRIDE-PRD2006 campaign in the Pearl River Delta region (PRD), China, for 4 weeks in July 2006 at a site located 60 km north of Guangzhou. The vertical distributions of NO2, HCHO, and CHOCHO were independently retrieved by an automated iteration method. The NO2 mixing ratios measured by MAX-DOAS showed reasonable agreement with the simultaneous, ground based in-situ data. The tropospheric NO2 vertical column densities (VCDs) observed by OMI on board EOS-Aura satellite were higher than with those by MAX-DOAS. The 3-D chemical transport model CMAQ overestimated the NO2 VCDs as well as the surface concentrations by about 65 %. From this observation, a reduction of NOx emission strength in CMAQ seems to be necessary in order to well reproduce the NO2 observations. The average mixing ratios of HCHO and CHOCHO were 7 ppb and 0.4 ppb, respectively, higher than in other rural or semirural environments. The high ratio of 0.062 between CHOCHO and HCHO corresponds to the high VOCs reactivity and high HOx turnover rate consistent with other observations during the campaign.
Lu K, Hofzumahaus A, Holland F, Bohn B, Brauers T, Fuchs H, Hu M, Häseler R, Kita K, Kondo Y, et al. Missing OH source in a suburban environment near Beijing: observed and modelled OH and HO2 concentrations in summer 2006. Atmospheric Chemistry and Physics. 2013;13(2):1057-1080.Abstract
Measurements of ambient OH and HO2 radicals were performed by laser induced fluorescence (LIF) during CAREBeijing2006 (Campaigns of Air Quality Research in Beijing and Surrounding Region 2006) at the suburban site Yufa in the south of Beijing in summer 2006. On most days, local air chemistry was influenced by aged air pollution that was advected by a slow, almost stagnant wind from southern regions. Observed daily concentration maxima were in the range of (4-17) x 10(6) cm(-3) for OH and (2-24) x 10(8) cm(-3) for HO2 (including an estimated interference of 25% from RO2). During daytime, OH reactivities were generally high (10-30 s(-1)) and mainly contributed by observed VOCs and their calculated oxidation products. The comparison of modelled and measured HOx concentrations reveals a systematic underprediction of OH as a function of NO. A large discrepancy of a factor 2.6 is found at the lowest NO concentration encountered (0.1 ppb), whereas the discrepancy becomes insignificant above 1 ppb NO. This study extends similar observations from the Pearl-River Delta (PRD) in South China to a more urban environment. The OH discrepancy at Yufa can be resolved, if NO-independent additional OH recycling is assumed in the model. The postulated Leuven Isoprene Mechanism (LIM) has the potential to explain the gap between modelled and measured OH at Beijing taking into account conservative error estimates, but lacks experimental confirmation. This and the hereby unresolved discrepancy at PRD suggest that other VOCs besides isoprene might be involved in the required, additional OH recycling. Fast primary production of ROx radicals up to 7 ppb h(-1) was determined at Beijing which was dominated by the photolysis of O-3, HONO, HCHO, and dicarbonyls. For a special case, 20 August, when the plume of Beijing city was encountered, a missing primary HOx source (about 3 ppb h(-1)) was determined under high NOx conditions similar to other urban areas like Mexico City. CAREBeijing2006 emphasizes the important role of OVOCs as a radical source and sink, and the need for further investigation of the chemical degradation of VOCs in order to better understand radical chemistry in VOC-rich air.
Wang ZB, Hu M, Mogensen D, Yue DL, Zheng J, Zhang RY, Liu Y, Yuan B, Li X, Shao M, et al. The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China. Atmospheric Chemistry and Physics. 2013;13(21):11157-11167.Abstract
Simulations of sulfuric acid concentration and new particle formation are performed by using the zero-dimensional version of the model MALTE (Model to predict new Aerosol formation in the Lower TropospherE) and measurements from the Campaign of Air Quality Research in Beijing and Surrounding areas (CAREBeijing) in 2008. Chemical reactions from the Master Chemical Mechanism version 3.2 (MCM v3.2) are used in the model. High correlation (slope = 0.72, R = 0.74) between the modelled and observed sulfuric acid concentrations is found during daytime (06:00-18:00). The aerosol dynamics are simulated by the University of Helsinki Multicomponent Aerosol (UHMA) model including several nucleation mechanisms. The results indicate that the model is able to predict the on- and offset of new particle formation in an urban atmosphere in China. In addition, the number concentrations of newly formed particles in kinetic-type nucleation including homogenous homomolecular (J=K[H2SO4]2) and homogenous heteromolecular nucleation involving organic vapours (J=K-het[H2SO4][Org]) are in satisfactory agreement with the observations. However, the specific organic compounds that possibly participate in the nucleation process should be investigated in further studies. For the particle growth, only a small fraction of the oxidized total organics condense onto the particles in polluted environments. Meanwhile, the OH and O3 oxidation mechanism contribute 5.5% and 94.5% to the volume concentration of small particles, indicating the particle growth is more controlled by the precursor gases and their oxidation by O3.
2012
Li X, Brauers T, Häseler R, Bohn B, Fuchs H, Hofzumahaus A, Holland F, Lou S, Lu K, Rohrer F, et al. Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China. Atmospheric Chemistry and Physics. 2012;12(3):1497-1513.Abstract
We performed measurements of nitrous acid (HONO) during the PRIDE-PRD2006 campaign in the Pearl River Delta region 60 km north of Guangzhou, China, for 4 weeks in June 2006. HONO was measured by a LOPAP in-situ instrument which was setup in one of the campaign supersites along with a variety of instruments measuring hydroxyl radicals, trace gases, aerosols, and meteorological parameters. Maximum diurnal HONO mixing ratios of 1–5 ppb were observed during the nights. We found that the nighttime build-up of HONO can be attributed to the heterogeneous NO2 to HONO conversion on ground surfaces and the OH + NO reaction. In addition to elevated nighttime mixing ratios, measured noontime values of ≈200 ppt indicate the existence of a daytime source higher than the OH + NO→HONO reaction. Using the simultaneously recorded OH, NO, and HONO photolysis frequency, a daytime additional source strength of HONO (PM) was calculated to be 0.77 ppb h−1 on average. This value compares well to previous measurements in other environments. Our analysis of PM provides evidence that the photolysis of HNO3 adsorbed on ground surfaces contributes to the HONO formation.
Lu K, Rohrer F, Holland F, Fuchs H, Bohn B, Brauers T, Chang C-C, Haeseler R, Hu M, Kita K, et al. Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere. Atmospheric Chemistry and Physics. 2012;12(3):1541-1569.Abstract
Ambient OH and HO2 concentrations were measured by laser induced fluorescence (LIF) during the PRIDE-PRD2006 (Program of Regional Integrated Experiments of Air Quality over the Pearl River Delta, 2006) campaign at a rural site downwind of the megacity of Guangzhou in Southern China. The observed OH concentrations reached daily peak values of (15-26) x 10(6) cm(-3) which are among the highest values so far reported for urban and suburban areas. The observed OH shows a consistent high correlation with j((OD)-D-1) over a broad range of NOx conditions. The correlation cannot be reproduced by model simulations, indicating that OH stabilizing processes are missing in current models. The observed OH exhibited a weak dependence on NOx in contrast to model predictions. While modelled and measured OH agree well at NO mixing ratios above 1 ppb, a continuously increasing underprediction of the observed OH is found towards lower NO concentrations, reaching a factor of 8 at 0.02 ppb NO. A dependence of the modelled-to-measured OH ratio on isoprene cannot be concluded from the PRD data. However, the magnitude of the ratio fits into the isoprene dependent trend that was reported from other campaigns in forested regions. Hofzumahaus et al. (2009) proposed an unknown OH recycling process without NO, in order to explain the high OH levels at PRD in the presence of high VOC reactivity and low NO. Taking a recently discovered interference in the LIF measurement of HO2 into account, the need for an additional HO2 -> OH recycling process persists, but the required source strength may be up to 20% larger than previously determined. Recently postulated isoprene mechanisms by Lelieveld et al. (2008) and Peeters and Muller (2010) lead to significant enhancements of OH expected for PRD, but an underprediction of the observed OH by a factor of two remains at low NO (0.1-0.2 ppb). If the photolysis of hydroperoxy aldehydes from isoprene is as efficient as proposed by Peeters and Muller (2010), the corresponding OH formation at PRD would be more important than the primary OH production from ozone and HONO. While the new isoprene mechanisms need to be confirmed by laboratory experiments, there is probably need for other, so far unidentified chemical processes to explain entirely the high OH levels observed in Southern China.
2011
Wagner T, Beirle S, Brauers T, Deutschmann T, Friess U, Hak C, Halla JD, Heue KP, Junkermann W, Li X, et al. Inversion of tropospheric profiles of aerosol extinction and HCHO and NO2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets. Atmospheric Measurement Techniques. 2011;4(12):2685-2715.Abstract
We present aerosol and trace gas profiles derived from MAX-DOAS observations. Our inversion scheme is based on simple profile parameterisations used as input for an atmospheric radiative transfer model (forward model). From a least squares fit of the forward model to the MAX-DOAS measurements, two profile parameters are retrieved including integrated quantities (aerosol optical depth or trace gas vertical column density), and parameters describing the height and shape of the respective profiles. From these results, the aerosol extinction and trace gas mixing ratios can also be calculated. We apply the profile inversion to MAX-DOAS observations during a measurement campaign in Milano, Italy, September 2003, which allowed simultaneous observations from three telescopes (directed to north, west, south). Profile inversions for aerosols and trace gases were possible on 23 days. Especially in the middle of the campaign (17-20 September 2003), enhanced values of aerosol optical depth and NO2 and HCHO mixing ratios were found. The retrieved layer heights were typically similar for HCHO and aerosols. For NO2, lower layer heights were found, which increased during the day. The MAX-DOAS inversion results are compared to independent measurements: (1) aerosol optical depth measured at an AERONET station at Ispra; (2) near-surface NO2 and HCHO (formaldehyde) mixing ratios measured by long path DOAS and Hantzsch instruments at Bresso; (3) vertical profiles of HCHO and aerosols measured by an ultra light aircraft. Depending on the viewing direction, the aerosol optical depths from MAX-DOAS are either smaller or larger than those from AERONET observations. Similar comparison results are found for the MAX-DOAS NO2 mixing ratios versus long path DOAS measurements. In contrast, the MAX-DOAS HCHO mixing ratios are generally higher than those from long path DOAS or Hantzsch instruments. The comparison of the HCHO and aerosol profiles from the aircraft showed reasonable agreement with the respective MAX-DOAS layer heights. From the comparison of the results for the different telescopes, it was possible to investigate the internal consistency of the MAX-DOAS observations.   As part of our study, a cloud classification algorithm was developed (based on the MAX-DOAS zenith viewing directions), and the effects of clouds on the profile inversion were investigated. Different effects of clouds on aerosols and trace gas retrievals were found: while the aerosol optical depth is systematically underestimated and the HCHO mixing ratio is systematically overestimated under cloudy conditions, the NO2 mixing ratios are only slightly affected. These findings are in basic agreement with radiative transfer simulations.

Pages