Li X, Brauers T, Hofzumahaus A, Lu K, Li YP, Shao M, Wagner T, Wahner A.
MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China. Atmospheric Chemistry and Physics. 2013;13(4):2133-2151.
AbstractWe performed MAX-DOAS measurements during the PRIDE-PRD2006 campaign in the Pearl River Delta region (PRD), China, for 4 weeks in July 2006 at a site located 60 km north of Guangzhou. The vertical distributions of NO2, HCHO, and CHOCHO were independently retrieved by an automated iteration method. The NO2 mixing ratios measured by MAX-DOAS showed reasonable agreement with the simultaneous, ground based in-situ data. The tropospheric NO2 vertical column densities (VCDs) observed by OMI on board EOS-Aura satellite were higher than with those by MAX-DOAS. The 3-D chemical transport model CMAQ overestimated the NO2 VCDs as well as the surface concentrations by about 65 %. From this observation, a reduction of NOx emission strength in CMAQ seems to be necessary in order to well reproduce the NO2 observations. The average mixing ratios of HCHO and CHOCHO were 7 ppb and 0.4 ppb, respectively, higher than in other rural or semirural environments. The high ratio of 0.062 between CHOCHO and HCHO corresponds to the high VOCs reactivity and high HOx turnover rate consistent with other observations during the campaign.
Lu K, Hofzumahaus A, Holland F, Bohn B, Brauers T, Fuchs H, Hu M, Häseler R, Kita K, Kondo Y, et al. Missing OH source in a suburban environment near Beijing: observed and modelled OH and HO2 concentrations in summer 2006. Atmospheric Chemistry and Physics. 2013;13(2):1057-1080.
AbstractMeasurements of ambient OH and HO2 radicals were performed by laser induced fluorescence (LIF) during CAREBeijing2006 (Campaigns of Air Quality Research in Beijing and Surrounding Region 2006) at the suburban site Yufa in the south of Beijing in summer 2006. On most days, local air chemistry was influenced by aged air pollution that was advected by a slow, almost stagnant wind from southern regions. Observed daily concentration maxima were in the range of (4-17) x 10(6) cm(-3) for OH and (2-24) x 10(8) cm(-3) for HO2 (including an estimated interference of 25% from RO2). During daytime, OH reactivities were generally high (10-30 s(-1)) and mainly contributed by observed VOCs and their calculated oxidation products. The comparison of modelled and measured HOx concentrations reveals a systematic underprediction of OH as a function of NO. A large discrepancy of a factor 2.6 is found at the lowest NO concentration encountered (0.1 ppb), whereas the discrepancy becomes insignificant above 1 ppb NO. This study extends similar observations from the Pearl-River Delta (PRD) in South China to a more urban environment. The OH discrepancy at Yufa can be resolved, if NO-independent additional OH recycling is assumed in the model. The postulated Leuven Isoprene Mechanism (LIM) has the potential to explain the gap between modelled and measured OH at Beijing taking into account conservative error estimates, but lacks experimental confirmation. This and the hereby unresolved discrepancy at PRD suggest that other VOCs besides isoprene might be involved in the required, additional OH recycling. Fast primary production of ROx radicals up to 7 ppb h(-1) was determined at Beijing which was dominated by the photolysis of O-3, HONO, HCHO, and dicarbonyls. For a special case, 20 August, when the plume of Beijing city was encountered, a missing primary HOx source (about 3 ppb h(-1)) was determined under high NOx conditions similar to other urban areas like Mexico City. CAREBeijing2006 emphasizes the important role of OVOCs as a radical source and sink, and the need for further investigation of the chemical degradation of VOCs in order to better understand radical chemistry in VOC-rich air.
Wang ZB, Hu M, Mogensen D, Yue DL, Zheng J, Zhang RY, Liu Y, Yuan B, Li X, Shao M, et al. The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China. Atmospheric Chemistry and Physics. 2013;13(21):11157-11167.
AbstractSimulations of sulfuric acid concentration and new particle formation are performed by using the zero-dimensional version of the model MALTE (Model to predict new Aerosol formation in the Lower TropospherE) and measurements from the Campaign of Air Quality Research in Beijing and Surrounding areas (CAREBeijing) in 2008. Chemical reactions from the Master Chemical Mechanism version 3.2 (MCM v3.2) are used in the model. High correlation (slope = 0.72, R = 0.74) between the modelled and observed sulfuric acid concentrations is found during daytime (06:00-18:00). The aerosol dynamics are simulated by the University of Helsinki Multicomponent Aerosol (UHMA) model including several nucleation mechanisms. The results indicate that the model is able to predict the on- and offset of new particle formation in an urban atmosphere in China. In addition, the number concentrations of newly formed particles in kinetic-type nucleation including homogenous homomolecular (J=K[H2SO4]2) and homogenous heteromolecular nucleation involving organic vapours (J=K-het[H2SO4][Org]) are in satisfactory agreement with the observations. However, the specific organic compounds that possibly participate in the nucleation process should be investigated in further studies. For the particle growth, only a small fraction of the oxidized total organics condense onto the particles in polluted environments. Meanwhile, the OH and O3 oxidation mechanism contribute 5.5% and 94.5% to the volume concentration of small particles, indicating the particle growth is more controlled by the precursor gases and their oxidation by O3.