- Wei, J.*, Li, Z., Lyapustin, A., Wang, J., Dubovik, O., Schwartz, J., Sun, L., Li, C., Liu, S., and Zhu, T. First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact. Nature Communications, 2023, 14, 8349. https://doi.org/10.1038/s41467-023-43862-3 (Media Outlets: Nature Communities, UMD) (ESI Hot and Highly Cited Paper, ESSIC Best Paper Award)
- Wei, J.*, Wang, J., Li, Z., Kondragunta, S., Anenberg, S., Wang, Y., Zhang, H., Diner, D., Hand, J., Lyapustin, A., Kahn, R., Colarco, P., da Silva, A., and Ichoku, C. Long-term mortality burden trends attributed to black carbon and PM2.5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study. The Lancet Planetary Health, 2023, 7, e963–e975. https://doi.org/10.1016/S2542-5196(23)00235-8 (Media Outlets: CBS News, The Hill, Yahoo News, U.S. News, et al.) (ESI Highly Cited Paper)
- Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., Su, T., and Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sensing of Environment, 2021, 252, 112136. https://doi.org/10.1016/j.rse.2020.112136 (ESI Hot and Highly Cited Paper, ESSIC Best Paper Award, 中国百篇最具影响力国际学术论文)
- Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., and Cribb, M. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sensing of Environment, 2019, 231, 111221. https://doi.org/10.1016/j.rse.2019.111221 (ESI Hot and Highly Cited Paper)
- Wei, J.*, Li, Z., Li, K., Dickerson, R., Pinker, R., Wang, J., Liu, X., Sun, L., Xue, W., and Cribb, M. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sensing of Environment, 2022, 270, 112775. https://doi.org/10.1016/j.rse.2021.112775 (ESI Hot and Highly Cited Paper)
- Wei, J., Li, Z., Guo, J., Sun, L., Huang, W., Xue, W., Fan, T., and Cribb, M. Satellite-derived 1-km-resolution PM1 concentrations from 2014 to 2018 across China. Environmental Science & Technology, 2019, 53(22), 13265–13274. https://doi.org/10.1021/acs.est.9b03258 (ESI Hot and Highly Cited Paper)
- Wei, J.*, Li, Z., Chen, X., Li, C., Sun, Y., Wang, J., Lyapustin, A., Brasseur, G., Jiang, M., Sun, L., Wang, T., Jung, C., Qiu, B., Fang, C., Liu, X., Hao, J., Wang, Y., Zhan, M., Song, X., and Liu, Y. Separating daily 1 km PM2.5 inorganic chemical composition in China since 2000 via deep learning integrating ground, satellite, and model data. Environmental Science & Technology, 2023, 57(46), 18282–18295. https://doi.org/10.1021/acs.est.3c00272 (ESI Highly Cited Paper, ES&T Best Paper Award)
- Wei, J.*, Liu, S., Li, Z., Liu, C., Qin, K., Liu, X., Pinker, R., Dickerson, R., Lin, J., Boersma, K., Sun, L., Li, R., Xue, W., Cui, Y., Zhang, C., and Wang, J. Ground-level NO2 surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence. Environmental Science & Technology, 2022, 56(14), 9988–9998. https://doi.org/10.1021/acs.est.2c03834 (ESI Hot and Highly Cited Paper)
- Wei, J.*, Wang, Z., Li, Z., Li, Z., Pang, S., Xi, X., Cribb, M., and Sun, L. Global aerosol retrieval over land from Landsat imagery integrating Transformer and Google Earth Engine. Remote Sensing of Environment, 2024, 315, 114404. https://doi.org/10.1016/j.rse.2024.114404
- Wei, J., Huang, W., Li, Z., Sun, L., Zhu, X., Yuan, Q., Liu, L., and Cribb, M. Cloud detection for Landsat imagery by combining the random forest and super-pixels extracted via energy-driven sampling segmentation approaches. Remote Sensing of Environment, 2020, 248, 112005. https://doi.org/10.1016/j.rse.2020.112005
