科研成果 by Type: 期刊论文

2020
Liu S, Wang H, Chen L, Wang J, Zheng M, Liu S, Chen Q, Ni J. Comammox Nitrospira within the Yangtze River continuum: community, biogeography, and ecological drivers. Isme JournalIsme Journal. 2020;14:2488-2504.Abstract
The recent discovery of comammoxNitrospiraas complete nitrifiers has fundamentally renewed perceptions of nitrogen cycling in natural and engineered systems, yet little is known about the environmental controls on these newly recognized bacteria. Based on improved phylogenetic resolution through successful assembly of ten novel genomes (71-96% completeness), we provided the first biogeographic patterns for planktonic and benthic comammoxNitrospirain the Yangtze River over a 6030 km continuum. Our study revealed the widespread distributions and relative abundance of comammoxNitrospirain this large freshwater system, constituting 30 and 46% of ammonia-oxidizing prokaryotes (AOPs) and displaying 30.4- and 17.9-fold greater abundances than canonicalNitrospirarepresentatives in water and sediments, respectively. ComammoxNitrospiracontributed more to nitrifier abundances (34-87% of AOPs) in typical oligotrophic environments with a higher pH and lower temperature, particularly in the plateau (clade B), mountain and foothill (clade A) areas of the upper reach. The dominant position of planktonic comammoxNitrospirawas replaced by canonicalNitrospirasublineages I/II and ammonia-oxidizing bacteria from the plateau to downstream plain due to environmental selection, while the dissimilarity of benthic comammoxNitrospirawas moderately associated with geographic distance. A substantial decrease (83%) in benthic comammoxNitrospiraabundance occurred immediately downstream of the Three Gorges Dam, consistent with a similarly considerable decrease in overall sediment bacterial taxa. Together, this study highlights the previously unrecognized dominance of comammoxNitrospirain major river systems and underlines the importance of revisiting the distributions of and controls on nitrification processes within global freshwater environments.
Li S, Kuang Y, Hu J, You M, Guo X, Gao Q, Yang X, Chen Q, Sun W, Ni J. Enrichment of antibiotics in an inland lake water. Environmental ResearchEnvironmental Research. 2020;190.Abstract
Inland water is very susceptible to the input of pollutants. However, little is known about the occurrence of antibiotics in inland lakes. In this study, a total of 83 target antibiotics were quantified in water and sediment samples collected from the Qinghai Lake, the largest inland lake of China located on the northeast of Qinghai-Tibet plateau, and its inflowing rivers. The results showed that 27 and 25 antibiotics were detected in water and sediments, respectively, with the summed concentrations (SUM) of 1.14-17.3 ng/L and 0.72-8.31 ng/g. Compared with the input rivers, significantly higher levels of sulfonamides (SAs), quinolones (QNs), polyethers (PEs), and SUM in water samples were observed in Qinghai Lake water. The average proportions of SAs (50.9-52.7%) and QNs (22.0-28.3%) in Qinghai Lake water nearly doubled compared to those in input rivers. An enrichment factor (EF) was proposed to reveal the enrichment degree of antibiotics in Qinghai Lake compared to its input river water. Sulfaguanidine (SGD), flumequine (FLU), and nalidixic acid (NDA) were enriched in Qinghai Lake up to several ten times based on the calculated EF values, due to their persistence in such a cold saline lake. Risk assessment showed that most antibiotics except anhydrochlortetracycline (ACTC) had insignificant risks to aquatic organisms and antibiotic resistance selection in Qinghai Lake water. This study was the first to reveal the enrichment of antibiotics in Qinghai Lake water, and suggests the urgent need to investigate the possible long-term enrichment and environmental risks of antibiotics in inland lakes.
Kuang Y, Guo X, Hu J, Li S, Zhang R, Gao Q, Yang X, Chen Q, Sun W. Occurrence and risks of antibiotics in an urban river in northeastern Tibetan Plateau. Scientific ReportsScientific Reports. 2020;10.Abstract
There is a dearth of information on the occurrence and risks of antibiotics in the urban rivers from plateau areas. This study investigated 83 antibiotics in water and sediments of an urban river and effluents of sewage treatment plants (E-STPs) in Xining, Qinghai (northeastern Tibetan Plateau). Fifty-three antibiotics were detected, and the concentrations of individual antibiotics varied in the range of undetected (ND)-552 ng/L in water, ND-164 ng/g in sediments, and ND-3821 ng/L in E-STPs. Seasonal differences of antibiotic concentrations were significant for water samples (p<0.05) but insignificant for sediments (p>0.05). In urban area, E-STP is the main source of antibiotics in the river, while runoff from manured cropland contributes partially to antibiotics in the river in the suburban area. The antibiotic compositions in water were different from those in sediments, but were similar to those in E-STPs. Notably, because of strong solar radiation and long sunshine hours in the plateau area, low levels of quinolones, which are sensitive to photolysis, were observed in river water. Moreover, norfloxacin and enrofloxacin, observed in urban river from other regions of China, were not detected in the Huangshui River water. The occurrence of ofloxacin, erythromycin, roxithromycin, clarithromycin, and trimethoprim in E-STPs may induce a possible risk to antibiotic resistance evolution. Trimethoprim, anhydroerythromycin, sulfamethoxazole, sulfapyridine, and clindamycin in river water could pose low to medium risks to aquatic organisms. Further investigation on the occurrence and distribution of antibiotic resistance genes in the Huangshui River is urgently needed.
Gu M, Zhao L, Chen Q, Zhao Z. Heavy metal pollution and ecological risk assessment of soil in Miyun Reservoir. Environmental Pollution & ControlEnvironmental Pollution & Control. 2020;42:1398-1404,1442.Abstract
It is of great significance to evaluate the heavy metal pollution of soil in the water source protection area. Taking Miyun Reservoir water source protection area as the research object,223 soil surface samples were collected from Miyun Reservoir water source protection area,and the contents of 8 heavy metals (Pb,Ni,Cu,Cr,Zn,Cd,Hg and As) were determined. The results showed that the average content of Hg and As in the overall study area were lower than the background value of Beijing soil,and the average content of the other 6 heavy metals were higher than the background value of Beijing soil. Soil heavy metal pollution degree and potential ecological risk were evaluated by the geo-accumulation index and potential ecological risk index,and the possible sources of heavy metals were analyzed. The standard rate of soil heavy metals in the study area was about 83%,and the risk of agricultural soil pollution was low. Cr and Cd in the study area were in the state of no-medium pollution,and the other 6 heavy metal elements were in the state of no pollution. The ecological hazard of Cd was moderate,and the other 7 heavy metal elements were slight,and the overall ecological hazards of the study area was moderate. Based on the analysis of heavy metal pollution and ecological risk in Miyun Reservoir water source protection area,reference for the prevention and control of heavy metal in soil and the protection of water source area in Beijing water source protection area were provided.评价水源保护区土壤重金属污染状况具有重要意义。以密云水库水源保护区为研究对象,采集223个表层土壤样品,测定了Pb、Ni、Cu、Cr、Zn、Cd 、Hg和As 8种重金属的含量。结果表明,整个研究区Hg、As的平均含量低于北京市土壤背景值,其余6种重金属平均含量均高于北京市土壤背景值。采用地累积指数法和 潜在生态风险指数法评估土壤重金属污染程度和潜在生态风险,并分析了重金属的可能来源。研究区内土壤重金属达标率约83%,农用地土壤污染风险低。研究区 Cr和Cd处于无-中污染状态,其余6种重金属元素处于无污染状态;Cd生态危害中等,其余7种重金属生态危害轻微,研究区整体生态危害中等。分析密云水 库水源保护区土壤重金属污染及其生态风险,能为北京市水源保护区土壤重金属污染防治与水源地保护提供参考依据。
Dang C, Xia Y, Zheng M, Liu T, Liu W, Chen Q, Ni J. Metagenomic insights into the profile of antibiotic resistomes in a large drinking water reservoir. Environment InternationalEnvironment International. 2020;136.Abstract
Reservoirs play a vital role in the control and management of surface water resources. However, the long water residence time in the reservoir potentially increases the storage and accumulation of antibiotic resistant genes (ARGs). The full profiles and potential health risks of antibiotic resistomes in reservoirs are largely unknown. In this study, we investigated the antibiotic resistomes of water and sediment during different seasons in the Danjiangkou Reservoir, which is one of the largest reservoirs in China, using a metagenomic sequencing approach. A total of 436 ARG subtypes belonging to 20 ARG types were detected from 24 water and 18 sediment samples, with an average abundance of 0.138 copies/cell. The overall ARG abundance in the sediment was higher than that in the water, and bacitracin and vancomycin resistance genes were the predominant ARG types in the water and sediment, respectively. The overall ARG abundance in the dry season was higher than that in the wet season, and a significant difference in ARG subtype compositions was observed in water, but not in the sediment, between the different seasons. The potential horizontal gene transfer frequency in the water was higher than that in the sediment, and the ARGs in water mainly came from the sediment upstream of the reservoir. The metagenomic assembly identified 14 contigs as ARG-carrying pathogens including Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and 3 of 14 carried virulence factors. Overall, the potential public health risks posed by resistomes in the water of the Danjiangkou Reservoir were higher in the dry season than in the wet season. Based on these results, strategies including sediment control and pathogen monitoring are suggested for water safety management in drinking water reservoirs.
Chen L, Liu S, Chen Q, Zhu G, Wu X, Wang J, Li X, Hou L, Ni J. Dispersal limitation drives biogeographical patterns of anammox bacterial communities across the Yangtze River. Applied Microbiology and BiotechnologyApplied Microbiology and Biotechnology. 2020;104:5535-5546.Abstract
Over the past few decades, anaerobic ammonium oxidation (anammox) has been extensively documented at different scales in natural ecosystems. Previous studies have stated that the community composition of anammox bacteria is shaped mainly by environmental factors, whereas spatial factors have been largely overlooked. This study investigated biogeographical patterns of anammox bacterial communities using 42 sediment samples along a 4300-km stretch of the Yangtze River, the longest river in Asia. A significant distance-decay relationship was observed for anammox bacterial community similarity, which was significantly influenced by mean dendritic distance rather than environmental factors. This implied that dispersal limitation plays an important role in shaping biogeographical pattern of anammox community. Furthermore, our results revealed that neutral processes played vital role in shaping community assembly of anammox bacteria, and their communities were seriously dispersal limited. These findings contrast with previous studies on community similarities between broad taxonomic groups, which are mainly determined by niche-based selection owing to greater niche distances within broad taxonomic groups than in anammox bacteria. Importantly, the slope of the distance-decay curve was much steeper than previously reported for whole bacteria, which indicating the species turnover rate of anammox bacterial community was significantly higher than that of the whole bacterial community. Anammox bacteria harbor strong adhesion ability and low dispersal potential, and ultimately exhibited a high species turnover rate. Together, in the context of biogeography, our results highlight the importance of dispersal limitation in shaping the biogeographical pattern of anammox bacterial community.
Zhao Z, Zeng X, Zhao L, Jiao X, Chen Q. Distribution and Characteristics of Organochlorine Pesticides in Soils from Conservation Areas of the Miyun Reservoir. Journal of Basic Science and EngineeringJournal of Basic Science and Engineering. 2020;28:805-816.Abstract
223 surface soil samples from conservation areas of the Miyun Reservoir were collected for detecting the concentration of organochlorine pesticides (OCPs) residues.The pollution characteristics,spatial distribution,influencing factors,origins of OCPs,and ecological risks were systematically explored.The results showed that the concentration of HCHs and DDTs in the soil samples ranged from ND to 2.10ng/g and ND to 526ng/g,respectively.The HCHs and DDTs in the Miyun reservoir presented zonal and discrete distribution characteristics,and the maximal values appeared in areas with dense population and developed agriculture.Moreover,both land use pattern and soil physical-chemical properties significantly impacted on the distribution of HCHs and DDTs.Highest concentration was found in farmland,and pH value was found to have greatest effect on the OCPs distribution.Furthermore,the OCPs residues in soils were mainly originated from the historical residues,atmospheric precipitation and recent inputs.Compared with other similar soil samples from different regions,the concentration of HCHs and DDTs in soil samples of the Miyun reservoir were at medium-low level,which suggested that HCHs and DDTs in the Miyun reservoir were in a state of low danger.以密云水库水源保护区为研究区域,对采集的223个表层土壤样品开展了有机氯农药残留浓度的测定,并对其污染特征、空间分布、影响因素、污染来源及生态风 险进行了探讨.结果表明,研究区域内HCHs和DDTs的总量变化范围分别在ND-2.10ng/g和ND-526ng/g之间,gamma-HCH、p ,p'-DDE和p,p'-DDT的检出率较高.HCHs和DDTs在空间上的分布呈现带状和离散性分布特征,浓度极值出现在人口密集和农业发达的地区. 土地利用方式和土壤理化性质均会对HCHs和DDTs的分布产生较大影响,其中耕地残留量最高,土壤pH值影响最大.HCHs和DDTs主要来源于早期残 留、大气的干湿沉降及近期的农药输入等.与国内外其他类似区域表层土壤相比,密云水库保护区土壤有机氯农药处于中等偏低水平,区域内总体生态风险较小,个 别点位可能存在潜在生态风险.
Zhao L, Liang Y-P, Chen Q, Xu Q, Jing H-W. Spatial Distribution, Contamination Assessment, and Sources of Heavy Metals in the Urban Green Space Soils of a City in North China. Huan jing ke xue= Huanjing kexueHuan jing ke xue= Huanjing kexue. 2020;41:5552-5561.Abstract
To study the condition of urban green space soils in the central parts of a city in North China, the spatial distribution, sources, and pollution levels of heavy metals (Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni) within green space soils in the central urban districts of the city were investigated. The results showed that the soil quality was high overall. The mean concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni were 0.172, 0.202, 9.02, 34.7, 57.0, 31.2, 85.7, and 26.3 mg·kg-1, respectively. The mean concentrations of Cd, Hg, Pb, and Zn in urban soils exceeded the background value of the Beijing-Tianjin-Tangshan region. All of the samples' heavy metal concentrations were lower than the risk screening values for soil contamination of development land in the national soil environment quality standards. With respect to the spatial distribution, the concentrations of As, Cr, and Ni were higher in the northwest of the study area, the concentrations of Cd and Zn were higher in the northeast, and the concentrations of Hg, Pb, and Cu were higher in the urban core area. As for the different land use types of the soils, the concentrations of Cd, Zn, and Ni were higher in the enterprise soils, while the concentrations of Hg, Pb, and Cu were higher in park and residential soils. Assessments of soil quality showed that 97.2% of soil samples' Nemerow integrated indices were less than 1, indicating that the soils were clean. Indices of potential ecological risk for all soil samples were less than 80, indicating that they posed a slight ecological risk. Multivariate statistical analysis (correlation and principle component analyses) showed that Cu, Pb, and Hg may originate from an anthropogenic source via the painting of ancient buildings and pesticides used to protect ancient trees. Chromium may originate from natural sources via geochemical activity and soil parent material; Cr, Zn, Ni, and As were derived from mixed sources through human and geochemical activities. The receptor model was used for identification and apportionment of pollution sources of elements over the standard. The contribution rates of sources were as follows:source 2(46.1%), source 3(33.1%), source 1(17.7%), and others (3.1%) for Cd, source 1(93.0%) for Cu, source 1(52.4%), source 3(24.2%), source 2(20.0%), and others (3.4%) for Zn, source 1(56.3%), source 2(37.8%), and source 3(5.8%) for Ni. Sources 1 and 3 were anthropogenic, while source 2 was natural.
Wang J, Liu T, Sun W, Chen Q. Bioavailable metal(loid)s and physicochemical features co-mediating microbial communities at combined metal(loid) pollution sites. ChemosphereChemosphere. 2020;260.Abstract
Heavy metal contamination poses considerable threats to various ecosystems, yet little is known about the assembly and adaptation of microbial communities at sites with combined heavy metal(loid) pollution. Here, we examined metal(loid) pollutants and bacterial communities in three zones (Zones I, II, and III) of an abandoned sewage reservoir with different usage years. The contamination level of multiple metal(loid)s was higher in Zone I than in the other zones, and arsenic (As), zinc (Zn), selenium (Se), copper (Cu), tin (Sn), molybdenum (Mo), antimony (Sb), cadmium (Cd), lead (Pb), thallium (TI), and nickel (Ni) were the major contaminants (pollution load index > 1). Bioavailable forms of titanium (Ti), chromium (Cr), Sn, and cobalt (Co) played essential roles in shaping the microbial structure, and physicochemical properties, especially organic matter (OM) and pH, also mediated the microbial diversity and composition in the metal(loid) contaminated zones. Metal-microbe interactions and heatmap analysis revealed that the bioavailability of metal(loid)s promoted the niche partitioning of microbial species. Metal-resistant species were abundant in Zone I that had the highest metal-contaminated level, whereas metal-sensitive species prevailed in Zone III that had the lowest pollution level. The bioavailable metal(loid)s rather than physicochemical and spatial variables explained a larger portion of the variance in the microbial community, and the homogeneous selection was the dominant ecological process driving the assembly of the microbial community. Overall, our study highlighted the importance of metal(loid) bioavailability in shaping microbial structure, future bioremediation, and environmental management of metal(loid) contaminated sites. (C) 2020 Elsevier Ltd. All rights reserved.
Liu S, Wang M, Li T, Chen Q. Response of an aerobic denitrifier to titanium dioxide nanoparticles exposure. Environmental TechnologyEnvironmental Technology. 2020;41:1446-1454.Abstract
The cytotoxicity of titanium dioxide nanoparticles (TiO2 NPs) to microorganisms has attracted great attention over the past few decades. As an important participator in the nitrogen cycle, aerobic denitrifiers have been proven to be negatively affected by TiO2 NPs, but the mechanism of this effect remains unclear. In this study, the bacteria-nanoparticle interaction was investigated by exposing an aerobic denitrifier, Pseudomonas stutzeri PCN-1 to different concentrations of TiO2 NPs at the dark condition, in order to investigate the cytotoxicity mechanism. The results illustrated that aerobic denitrification was inhibited at different TiO2 NPs concentrations from 1 to 128 mg/L, accompanied by the postponement of nitrate reduction and the accumulations of nitrite and nitrous oxide. But this inhibitory effect was mitigated with increasing TiO2 NPs concentrations. Further studies revealed that expressions of aerobic denitrification genes were also inhibited with the presence of TiO2 NPs, and the inhibition effect on napA and nirS genes was more significant than that on nosZ and cnorB, which might directly bring about the delayed nitrate reduction and hindered nitrite transfer. Moreover, the decreased toxicities at higher TiO2 NPs concentrations could be attributed to the formation of larger aggregates (>1000 nm), which greatly reduced the chance for direct interactions between NPs and bacterial membranes, as well as the interruption of denitrifying genes expressions. These findings were meaningful for the formation of deep insights into the mechanism of TiO2 NPs cytotoxicity as well as the development of strategies to control the negative effect of nanoparticles in the environment. Aerobic denitrification characteristics of strain PCN-1 under different carbon sources.
2019
Xie M, Chen Q, Dang C, Pan B, An R, Wu Z, ZHOU M. Study on Nitrogen Release from Reservoir Sediments and Nitrogen Removal by Aerobic Microorganism. Acta Scientiarum Naturalium Universitatis PekinensisActa Scientiarum Naturalium Universitatis Pekinensis. 2019;55:561-570.Abstract
This study focuses on the Danjiangkou reservoir, and investigates the release regulation of total nitrogen, nitrate, nitrite and ammonia from sediments as a function of temperature, perturbation and aeration conditions. Moreover, a simulation reactor was set up to explore the elimination of endogenous nitrogen pollution through high-efficient aerobic denitrification microorganism augmentation. Effects of high-efficient aerobic denitrification microorganisms on the microbial community structure in the sediments was also evaluated by means of high-throughput sequencing technology. The results indicated that increasing temperature could promote the release of nitrate and nitrite from sediments, while inhibiting the release of ammonium. Disturbances of water was beneficial to nitrogen release from sediments, and the nitrogen amount accumulated in the overlying water was proportional to the agitation speed. Concentrations of dissolved oxygen had great effects on the nitrogen release from sediments. It was found that the aeration treatment significantly reduced the release of total nitrogen and nitrite from sediments, and the subsequent accumulation in water. After addition of the a high-efficient aerobic denitrification bacteria Pseudomonas stutzeri (PCN-1) into the simulation reactor, concentrations of all the forms of nitrogen in the reactor increased at first and then decreased. On the 65th day of the experiment, removal rates of total nitrogen and nitrate released from sediments were as high as 75.87% and 79.96% respectively, suggesting effective control of the endogenous nitrogen. The relative abundance of Proteobacteria, Bacteroidetes and Spirochaetes in sediments was significantly increased after PCN-1 addition, so the microbial community structure in the sediments was changed by microbial augmentation treatment with PCN-1 as well.以丹江口水库为例,考察水库底泥在不同温度、扰动和曝气等条件下,总氮、硝氮、氨氮和亚硝氮的释放规律。设置模拟反应器,探究高效好氧脱氮微生物强化消除 水库底泥内源氮污染的效果,并运用高通量测序技术,分析高效好氧脱氮微生物对底泥微生物群落结构的影响。结果表明,温度升高会减少氨氮的释放,增加硝氮和 亚硝氮的积累;水体扰动会加速底泥中氮素释放,且上覆水中的氮素释放累积量与扰动速度成正比;溶解氧对底泥氮素释放有显著影响,曝气处理可以明显地降低底 泥中总氮和硝氮的释放及其在水体中的累积。在反应器中底泥-上覆水界面投加高效好氧脱氮微生物Pseudomonas stutzeri (PCN-1)后,反应器内各种形态的氮素都出现先上升、后下降的趋势;在反应器运行的第65天,底泥释放的总氮和硝氮的去除率分别高达75.87%和7 9.96%,底泥内源氮污染得到有效的控制。对比投加菌株前后的微生物群落结构,发现底泥中Proteobacteria, Bacteroidetes和Spirochaetes的相对丰度明显增加, PCN-1强化脱氮处理能够改变底泥的微生物群落结构。
Wang J, Liu Q, Zhao X, Borthwick AGL, Liu Y, Chen Q, Ni J. Molecular biogeography of planktonic and benthic diatoms in the Yangtze River. MicrobiomeMicrobiome. 2019;7.Abstract
Background: Diatoms are of great significance to primary productivity in oceans, yet little is known about their biogeographic distribution in oligotrophic rivers. Results: With the help of metabarcoding analysis of 279 samples from the Yangtze River, we provided the first integral biogeographic pattern of planktonic and benthic diatoms over a 6030 km continuum along the world's third largest river. Our study revealed spatial dissimilarity of diatoms under varying landforms, including plateau, mountain, foothill, basin, foothill-mountain, and plain regions, from the river source to the estuary. Environmental drivers of diatom communities were interpreted in terms of photosynthetically active radiation, temperature, channel slope and nutrients, and human interference. Typical benthic diatoms, such as Pinnularia, Paralia, and Aulacoseira, experienced considerable reduction in relative abundance downstream of the Three Gorges Dam and the Xiluodu Dam, two of the world's largest dams. Conclusions: Our study revealed that benthic diatoms are of particular significance in characterizing motile guild in riverine environments, which provides insights into diatom biogeography and biogeochemical cycles in large river ecosystems.
Chen L, Liu S, Chen Q, Zhu G, Wu X, Wang J, Li X, Hou L, Ni J. Anammox response to natural and anthropogenic impacts over the Yangtze River. Science of the Total EnvironmentScience of the Total Environment. 2019;665:171-180.Abstract
Increasing attention has been paid to anaerobic ammonium oxidation (anammox) in river ecosystems due to their special role in the global nitrogen cycle from land to the ocean. This study have revealed the spatial patterns of anammox bacterial response to geographic characteristics and dam operation along the Yangtze River, using N-15 tracers and molecular analyses of microbial communities in sediment samples over a 4300 km continuum. Here we found a significant temperature-related increase in anammox bacterial abundance and alpha diversity from mountainous area in the upper, fluvial plain area in the middle and lower reach, to the river mouth. In contrast, an opposite trend in anammox contribution to N-2 production (ra) was observed down the Yangtze River due to enhanced denitrification induced by spatial heterogeneity of total organic carbon. Interestingly, the Three Gorges Dam resulted in an intensive erosion and thus a change from muddy to sandy sediments within 400 km downstream the dam, which readjusted the anammox community characterized with a decreased bacterial diversity and enhanced anammox contribution to nitrogen loss. Our study highlights the importance of natural and anthropogenic impacts on anammox bacterial community and function in a complex large river ecosystem. (c) 2019 Published by Elsevier B.V.
2018
Liu T, Zhang AN, Wang J, Liu S, Jiang X, Dang C, Ma T, Liu S, Chen Q, Xie S, et al. Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze River. MicrobiomeMicrobiome. 2018;6.Abstract
Background: Bacterial communities are essential to the biogeochemical cycle in riverine ecosystems. However, little is presently known about the integrated biogeography of planktonic and sedimentary bacterial communities in large rivers. Results: This study provides the first spatiotemporal pattern of bacterial communities in the Yangtze River, the largest river in Asia with a catchment area of 1,800,000 km(2). We find that sedimentary bacteria made larger contributions than planktonic bacteria to the bacterial diversity of the Yangzte River ecosystem with the sediment subgroup providing 98. 8% of 38,906 operational taxonomic units (OTUs) observed in 280 samples of synchronous flowing water and sediment at 50 national monitoring stations covering a 4300 km reach. OTUs within the same phylum displayed uniform seasonal variations, and many phyla demonstrated autumn preference throughout the length of the river. Seasonal differences in bacterial communities were statistically significant in water, whereas bacterial communities in both water and sediment were geographically clustered according to five types of landforms: mountain, foothill, basin, foothill-mountain, and plain. Interestingly, the presence of two huge dams resulted in a drastic fall of bacterial taxa in sediment immediately downstream due to severe riverbed scouring. The integrity of the biogeography is satisfactorily interpreted by the combination of neutral and species sorting perspectives in meta-community theory for bacterial communities in flowing water and sediment. Conclusions: Our study fills a gap in understanding of bacterial communities in one of the world's largest river and highlights the importance of both planktonic and sedimentary communities to the integrity of bacterial biogeographic patterns in a river subject to varying natural and anthropogenic impacts.
Liu S, Chen Q, Ma T, Wang M, Ni J. Genomic insights into metabolic potentials of two simultaneous aerobic denitrification and phosphorus removal bacteria, Achromobacter sp GAD3 and Agrobacterium sp LAD9. Fems Microbiology EcologyFems Microbiology Ecology. 2018;94.Abstract
Bacteria capable of simultaneous aerobic denitrification and phosphorus removal (SADPR) are promising for the establishment of novel one-stage wastewater treatment systems. Nevertheless, insights into the metabolic potential of SADPR-related bacteria are limited. Here, comprehensive metabolic models of two efficient SADPR bacteria, Achromobacter sp. GAD3 and Agrobacterium sp. LAD9, were obtained for the first time by high-throughput genome sequencing. With succinate as the preferred carbon source, both strains employed a complete TCA cycle as the major carbon metabolism for potentials of various organic acids and complex carbon oxidation. Complete and truncated aerobic denitrification routes were confirmed in GAD3 and LAD9, respectively, facilitated by all the major components of the electron transfer chain via oxidative phosphorylation. Comparative genome analysis revealed distinctive ecological niches involved in denitrification among different phylogenetic clades within Achromobacter and Agrobacterium. Excellent phosphorus removal capacities were contributed by inorganic phosphate uptake, polyphosphate synthesis and phosphonate metabolism. Additionally, the physiology of GAD3/LAD9 is different from that displayed by most available polyphosphate accumulating organisms, and reveals both strains to be more versatile, carrying out potentials for diverse organics degradation and outstanding SADPR capacity within a single organism. The functional exploration of SADPR bacteria broadens their significant prospects for application in concurrent aerobic carbon and nutrient removal.
Lin Q, Xu X, Chen Q, Fang J, Shen X, Zhang L. Changes in structural characteristics and metal speciation for biochar exposure in typic udic ferrisols. Environmental Science and Pollution ResearchEnvironmental Science and Pollution Research. 2018;25:153-162.Abstract
Recent studies on biochars confirmed their potential benefits in improving soil fertility and sequestrating contaminants. However, little information on the changes in structural characteristics and metal speciation of biochars after exposure to soils is currently available. The aim of this study was to use double experimental bags to study the transformation of ozonized biochars derived from poultry manure and drying sludge (denoted PB and SB, respectively) in typic udic ferrisols. The carbon and sulfur functional groups and chemical characteristics of the biochars were determined using spectroscopic techniques, such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy spectroscopy, combined with chemical extractions. Metal species were characterized using Cu K-edge X-ray absorption near-edge structure and chemical sequential fractionation schemes. The results showed that the potential changes in structural characteristics and metal species of biochars in soil were highly dependent on the composition of the biochars. PB comprised highly aromatic and chemically stable C, whereas SB contained a substantial amount of easily degradable C. Oxygen-containing groups slightly increased after incubation in the soil with either 60% water holding capacity (WHC) or flooding for 3 months. Sulfur in the biochars was predominantly inorganic S. Minerals such as K, Na, Mg, and S were mobilized from the biochars, accounting for 5-55% depending on the properties and sources of the element. Both PB and SB contained high concentrations of Cu and Zn. CuO in PB dissolved within 3 months, whereas CuS in both PB and SB was partly oxidized in the soil with 60% WHC for 9 months and adsorbed to the organic phase. Zn had relatively high mobility in both biochars, resulting in its vertical migration into soils.
Li X, Liu S, Chen Q. Identification of an Aerobic Denitrifier and Its Denitrification Characteristics. Acta Scientiarum Naturalium Universitatis PekinensisActa Scientiarum Naturalium Universitatis Pekinensis. 2018;54:1276-1282.Abstract
Strain HG-7 was identified as Pseudomonas sp.through 16s rRNA gene sequence analysis.The aerobic denitrification ability of strain HG-7 was further proved by the existence of the napA and nirK genes.Further studies showed that the optimal carbon resources for strain HG-7 were sodium acetate and sodium succinate,the optimal C/N ratio was 6-10,and the suitable temperature was 26-30℃.At this condition,with an initial nitrate nitrogen of 100 mg/L,98% of nitrate could be removed in 48 hours and the amount of nitrite accumulation was very small.Moreover,with nitrite as the sole nitrogen source,100% of nitrite could be removed at lower nitrite concentration.But the nitrite nitrogen removal rate was about 40% when the nitrite concentration increased to 91.4 mg/L,indicating that high nitrite concentration was harmful for aerobic denitrification by strain HG-7.The strain HG-7 has great potential to be used for biological nitrogen removal,which was particularly significant for actual wastewater treatment processes.以筛选分离得到的好氧反硝化菌HG-7为研究对象,经过16S rRNA同源性分析,初步鉴定该菌株为假单胞菌属(Pseudomonas sp.)。对菌株HG-7反硝化功能基因的扩增结果表明,菌体HG-7内存在好氧反硝化功能基因napA和nirK,证实该细菌为好氧反硝化细菌。对菌株 的脱氮特性和影响因素的研究表明,以硝酸盐氮为氮源时,菌株的最适碳源为乙酸钠和丁二酸钠,最佳C/N比为6~10,最适宜的温度范围为26~30℃。在 上述条件下,菌株HG-7的好氧反硝化活性较高,48小时内对100 mg/L硝酸盐氮的去除率可达98%,且在反应过程中亚硝酸盐氮积累量较低。以亚硝酸氮为唯一氮源时,低浓度条件下可实现100%的氮素去除率;高浓度条 件下,脱氮速率则受到明显的抑制,对91.4 mg/L的亚硝酸盐氮氮去除率约为40%。因此,将该菌株应用于废水的脱氮处理,可实现氮素的有效去除,具有潜在的应用价值。
Jia J, Zhang Q, Chen Q, Zhang H, Lin F, Zhao J. Differential Expression of Proteins in Datong Yak and Chaidamu Yellow Cattle Longissimus lumborum Muscles and Relation to Meat Water Holding Capacity. Kafkas Universitesi Veteriner Fakultesi DergisiKafkas Universitesi Veteriner Fakultesi Dergisi. 2018;24:691-700.Abstract
We investigated that proteins differently expressed in Datong Yak and Chaidamu Yellow Cattle Longissimus longurum muscles and their relation to tissue water-holding capacity. Samples were classified according to breed and postmortem aging into Yakoh, Cattleoh, Yak24h and Cattle24h groups. Fifty seven differentially expressed proteins were confirmed by MALDI-TOF/TOF-MS. Twenty eight proteins could be identified and were divided into five main categories: structural proteins, metabolic enzymes, stress related proteins, transporter proteins and binding proteins. Myosin light chain (MLC), Heat Shock 27kDa (HSP 27) and Keratin 10 (KRT 10) proteins showed significant differences in expression between yak and cattle meat and may have the potential to be used as biological markers of tissue WHC. Bioinformatics analysis showed differentially these proteins included both metabolic enzymes and structural proteins. The functions of the identified proteins contribute to a more detailed molecular view of the processes behind WHC and are a valuable resource for future investigations.
Dang C, Liu W, Lin Y, Zheng M, Jiang H, Chen Q, Ni J. Dominant role of ammonia-oxidizing bacteria in nitrification due to ammonia accumulation in sediments of Danjiangkou reservoir, China. Applied Microbiology and BiotechnologyApplied Microbiology and Biotechnology. 2018;102:3399-3410.Abstract
Surface sediments are the inner source of contaminations in aquatic systems and usually maintain aerobic conditions. As the key participators of nitrification process, little is known about the activities and contributions of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the surface sediments. In this study, we determined the net and potential nitrification rates and used 1-octyne as an AOB specific inhibitor to detect the contributions of AOA and AOB to nitrification in surface sediments of Danjiangkou reservoir, which is the water source area of the middle route of South-to-North Water Diversion Project in China. Quantitative PCR and Illumina high-throughput sequencing were used to evaluate the abundance and diversity of the amoA gene. The net and potential nitrification rates ranged from 0.42 to 1.93 and 2.06 to 8.79 mg N kg(-1) dry sediments d(-1), respectively. AOB dominated in both net and potential nitrification, whose contribution accounted for 52.7-78.6% and 59.9-88.1%, respectively. The cell-specific ammonia oxidation rate calculation also revealed the cell-specific rates of AOB were higher than that of AOA. The Spearman's rank correlation analysis suggested that ammonia accumulation led to the AOB predominant role in net nitrification activity, and AOB abundance played the key role in potential nitrification activity. Furthermore, phylogenetic analysis suggested AOB were predominantly characterized by the Nitrosospira cluster, while AOA by the Nitrososphaera and Nitrososphaera sister clusters. This study will help us to better understand the contributions and characteristics of AOA and AOB in aquatic sediments and provide improved strategies for nitrogen control in large reservoirs.
2017
Lin Q, Xu X, Wang L, Chen Q, Fang J, Shen X, Lou L, Tian G. The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature. Frontiers of Environmental Science & EngineeringFrontiers of Environmental Science & Engineering. 2017;11.Abstract
Biochars derived from animal manures may accumulate potentially toxic metals and cause a potential risk to ecosystem. The synchrotron-based X-ray spectroscopy, sequential fractionation schemes, bioaccessibility extraction and leaching procedure were performed on poultry and swine manure-derived biochars (denoted PB and SB, respectively) to evaluate the variance of speciation and activity of Cu and Zn as affected by the feedstock and pyrolysis temperature. The results showed that Cu speciation was dependent on the feedstock with Cu-citrate-like in swine manure and species resembling Cu-glutathione and CuO in poultry manure. Pyrolyzed products, however, had similar Cu speciation mainly with species resembling Cu-citrate, CuO and CuS/Cu2S. Organic bound Zn and Zn-3(PO4)(2)-like species were dominant in both feedstock and biochars. Both Cu and Zn leaching with synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) decreased greatly with the rise of pyrolysis temperature, which were consistent with the sequential extraction results that pyrolysis converted Cu and Zn into less labile phases such as organic/sulfide and residual fractions. The potential bioaccessibility of Zn decreased for both the PB and SB, closely depending on the content of non-residual Zn. The bioaccessibility of Cu, however, increased for the SB prepared at 300 degrees C-700 degrees C, probably due to the increased proportion of CuO. Concerning the results of sequential fractionation schemes, bioaccessibility extraction and leaching procedure, pyrolysis at 500 degrees C was suggested as means of reducing Cu/Zn lability and poultry manure was more suitable for pyrolysis treatment. (C) Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Pages