摘要:
This paper presents the effect of NaCl on aerobic denitrification by a novel aerobic denitrifier strain Achromobacter sp. GAD-3. Results indicated that the aerobic denitrification process was inhibited by NaCl concentrations ae<yen>20 g L-1, leading to lower nitrate removal rates (1.67 +/- 4.0 mg L-1 h(-1)), higher nitrite accumulation (50.2 +/- 87.4 mg L-1), and increasing N2O emission ratios (13 +/- 72 mg L-1/mg L-1). Poor performance of aerobic denitrification at high salinity was attributed to the suppression of active microbial biomass and electron donating capacity of strain GAD-3. Further studies on the corresponding inhibition of the denitrifying gene expression by higher salinities revealed the significant sensitivity order of nosZ (for N2O reductase) > cnorB (for NO reductase) ae nirS (for cytochrome cd(1) nitrite reductase) > napA (for periplasmic nitrate reductase), accompanied with a time-lapse expression between nosZ and cnorB based on reverse transcription and real-time quantitative polymerase chain reaction (RT-qPCR) analysis. The insights into the effect of NaCl on aerobic denitrification are of great significance to upgrade wastewater treatment plants (WWTPs) containing varying levels of salinity.附注:
Times Cited: 17191432-0614