Public transportation is important for older adults to meet their mobility needs and obtain external support. However, little is known about the elderly population with disabilities using public transportation. Using a nationally representative sample from the China Family Panel Studies (CFPS) for 2016, 2018, and 2020, we examined the elderly and public transportation disability (E&PTD) rate and its determinants in Chinese adults aged 45 years and above; the E&PTD rate in this population was 9.65%. The results showed that factors such as being female, age, and family size increased the likelihood of E&PTD in older adults. Married older adults with more education, better intelligence, higher incomes, receiving a pension, and living in urban areas and pilot provinces of healthcare reform were less likely to have E&PTD. This study provides an important policy reference for providing better public transportation services for E&PTDs.
Advanced oxidation processes (AOPs) have a broad range of potential applications in the treatment of emerging refractory emerging pollutants. However, due to the presence of highly reactive substances such as free radicals that are difficult to capture, it is challenging to investigate the mechanism of AOPs at the elementary reaction level. The conventional methods, such as electron spin resonance (ESR), free radical quantification, and free radical quenching, are plagued by systematic issues that have led to bottlenecks in the field of AOP studies. The development of computational chemistry theory and computer performance provides a new method to study the mechanism of AOPs through density functional theory (DFT) calculation. Due to its excellent cost–performance benefit, DFT calculations for aperiodic small molecules have become popular in the field of AOPs. In this paper, a comprehensive review is presented on the applications of DFT calculations for predicting active sites and exploring reaction selectivity and oxidant activation mechanisms. A systematic classification of methods related to molecular descriptors and transition states is provided. Furthermore, some current research issues are identified, and future development prospects and challenges are discussed.
PURPOSE: To investigate the distinct characteristics between young and elderly polypoidal choroidal vasculopathy (PCV) patients based on the pachy- or non-pachychoroid phenotypes. METHODS: PCV patients treated with intravitreal injections of Conbercept based on the 3 + PRN regimen from 27 centers of China PCV Research Alliance were included. Patients were categorized into the young and the elderly aged group based on the cut-off point determined using the Youden method according to the pachychoroid phenotypes. The characteristics of past medical history, lifestyle factors, fundus manifestations, and treatment response between the subgroups were analyzed. RESULTS: Three hundred eight eligible patients were included. Multivariate logistic regression showed a significant association between age and PCV subtype classification (OR = 0.921, P = 0.002). A cutoff age of 64.5 effectively distinguished between pachychoroid PCV and non-pachychoroid PCV (P < 0.001). Elderly PCV patients had a higher incidence of hypertension history (P = 0.044) but a lower incidence of diabetes history (P = 0.027). In terms of lifestyle, smoking history (P = 0.015) and staying up late (P = 0.004) were more significant in the young group of PCV patients. For clinical characteristics, the proportion of hemorrhagic PCV in the young group was significantly higher (P = 0.038), with a higher proportion of sharp-peaked PED (P = 0.049), thicker choroid (P < 0.001) but a lower portion of double-layer sign (P = 0.023) in OCT. Both groups showed significant anatomical changes compared to baseline in each follow-up period (P < 0.05), with the young group having a higher proportion of good anatomical response after the first injection (P = 0.009). CONCLUSION: PCV patients stratified by subtype exhibit distinct characteristics between the young and elderly groups.
Persistent green innovation helps enterprises save energy, reduce pollution, and continue to gain economic benefits. However, existing studies explored the economic and organizational factors influencing firms’ persistent green innovation while neglecting peer influence in the digital economy. This study examines the impact of digital economy and peer influence on persistent green innovation using data of Chinese-listed companies from 2011 to 2019. The results show that digital economy and peer influence positively affect persistent green innovation. Moreover, digital economy plays a competitive mediating role between peer influence and persistent green innovation. The results of further research show that both the time lag term of peer influence and spatial lag term of digital economy affect persistent green innovation. This study incorporates the three-level elements of enterprise, peer, and city into a unified framework, providing theoretical reference and practical guidance for green innovation to enhance the competitive advantage of enterprises.
There is growing interest in the relationship between digitalization and environmental, social, and governance (ESG) performance, but existing research focuses on the one-way relationship and ignores the two-way mechanism. Based on a sample of 3335 listed companies in China in 2020, this study adopts a spatial simultaneous equation model to investigate the bidirectional mechanism between companies’ digitalization and ESG performance. The results show that digitalization and ESG performance have a significant positive two-way mechanism; digitalization enhances ESG performance, while ESG performance promotes digitalization. The results also indicate a significant positive intra-industry spillover effect for both digitization and ESG performance. Further research shows that the relationship between digitization and ESG performance does not differ depending on the definition of spatial weights, however, the spillover effects do differ depending on the definition of spatial weights.
Plastisphere, characterized by microbial colonization on plastic debris, has attracted concern with its adverse environmental effects. The microbial features have been increasingly investigated; however, there lacks direct evidence for microplastics serving as carbon sources and enriching plastic-degrading microorganisms. Here, we obtained microbial communities from soil microplastics, analyzed the dissimilarity compared with soil, and characterized the plastic-degrading potential of isolates from plastisphere. Results showed the plastisphere communities significantly differed from soil communities and exhibited a higher relative abundance of Nocardia and Rhodococcus. To verify the selective enrichment of plastic-degrading microorganisms in the plastisphere, culture-based strategies were employed to evaluate the polyethylene (PE) degradation potential of two isolates Nocardia asteroides No.11 and Rhodococcus hoagii No.17. They could grow solely on PE and led to significant weight loss. FTIR and SEM analysis revealed the formation of new functional groups and the destruction of structural integrity on PE surfaces. Genes related to PE biodegradation were identified by genome-wide sequencing thus recognizing relevant enzymes and elucidating potential pathways. Overall, this report combined culture-free and culture-based approaches to confirm the plastic degradation potential of selectively enriched microorganisms in soil plastisphere, providing a positive perspective toward promoting microplastic biodegradation in farmland soil by enhancing natural microbial processes.
Microplastics, recognized as some of the most pervasive and enduring pollutants, have emerged as a potential threat to environmental eco-health. While much is known about the effects of microplastics on soil microorganisms, our understanding of how they interact with terrestrial organisms and the underlying mechanisms remains limited. In this study, the effects of polyethylene microplastics at a concentration of 0.5 % (w/w) on the antioxidant enzymes, gut microbiota of Eisenia fetida and the soil microbiota on days 1, 3, 7, 15, and 30 were investigated. The results indicated that exposure to microplastics slightly increased the activities of superoxide dismutase (1.22-fold on day 3, 1.12-fold on day 7) and catalase (1.10-fold on day 3, 1.09-fold on day 7) in E. fetida, while exposure markedly decreased peroxidase activity (1.33- to 1.79-fold) throughout the whole period. Both the soil microbiota and the gut microbiota of E. fetida in terms of diversity and composition were significantly affected by the microplastic amendment, and their structure tended to be similar throughout the exposure time. The family Nocardiaceae was significantly enriched in both the soil and E. fetida gut biota with microplastic exposure. Our results demonstrated that the antioxidant enzyme response of E. fetida was closely related to both the microbiota, although this relationship with the gut microbiota may have been weakened by microplastic exposure. Overall, this study furnishes new perspectives on the ecotoxicity of microplastics, revealing significant implications for the vitality of soil-dwelling organisms and the overarching health of terrestrial ecosystems.
Wang Q, Wang Y, Wang Y, Ying X. Dissecting the Failure of Invariant Learning on Graphs, in Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024.; 2024. 访问链接